首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
<正>在解不等式或恒成立问题中,有很大一部分题目是由函数单调性构造出来的,若能找出这些函数模型(即不等式或等式两边对应的同一函数),无疑会大大加快解决这些问题的速度.比如F(x)≥0能等价变形成f [g(x)]≥f [h(x)],然后利用函数f(x)的单调性,再转化为g(x)≥h(x)(或者g(x)≤h(x)),这种方法称为同构不等式法(等号成立时,称为同构等式法),简称同构法.  相似文献   

2.
不等式恒成立问题是高考中一类常见的典型问题.这类问题的解决,大多可用函数的观点来审视,用函数的有关性质来处理.而导数是研究函数性质的有力工具,因而将不等式f(x)≥g(x)恒成立转化为F(x)=f(x)-g(x)≥0恒成立问题,再用导数方法探讨F(x)的单调性及最值,就顺理成章了.一、利用函数的单调性例1(2006年全国卷Ⅱ)设函数f(x)=(x 1)ln(x 1).若对所有x≥0,都有f(x)≥ax成立,求实数a的取值范围.解:构造相应函数g(x)=(x 1)ln(x 1)-ax,于是不等式f(x)≥ax转化为g(x)≥g(0)对x≥0恒成立的问题.对g(x)求导数,得g′(x)=ln(x 1) 1-a.令g′(x)=0,解得x=e…  相似文献   

3.
<正>一、关于存在性问题存在性不等式中变量的取值范围问题:若函数f(x)具有最小值,若存在x∈D,使得f(x)≤a成立,则只须当x∈D时,f(x)min≤a;若函数f(x)具有最大值,若存在x∈D,使得f(x)≥a成立,则只须当x∈D时,f(x)_(max)≥a。这类问题也可归结为函数的最值问题,利用函数的单调性时,导数仍  相似文献   

4.
题目:已知a,b是实数,函数f(x)=x2+ax,g(x)=x2+bx,f’(x)和g’(x)是f(x),g’(x)的导函数,若f’(x)g’(x)≥0在区间I上恒成立,则称f(x)和g(x)在区间I上单调性一致(1)设a>0,若函数f(x)和g(x)在区间[-1,+∞)上单调性一致,求实数b的取值范围;(2)设a<0,若函数f(x)和g(x)在以a,b为端点的开区间上单调性一致,求|a-b|的最大值.  相似文献   

5.
正一般来说,欲证不等式f(x)g(x)(或f(x)g(x))在区间I上恒成立,则可构造函数h(x)=f(x)-g(x),通过讨论h'(x)在区间I上的符号情况,判断出h(x)的单调性,然后由函数h(x)在区间I上的一个初始值,证得不等式成立.但有时由于方程h'(x)=0的根不好求,或者利用初等方法根本求不出来,于是我们可以分别考虑f(x)与g(x)的最值来完成.本文就证明f(x)g(x)(或f(x)g(x))恒成立的几种常见思考方法梳理如下.1.构造函数h(x)=f(x)-g(x),判断函数h(x)的单调性,给出h(x)的一个初始值  相似文献   

6.
<正>分离图像法就是把一个复杂的函数分解成便于求导研究单调性的常见函数的方法,在解决高考函数压轴题上有广泛的应用,下面笔者用此法尝试解决2017年的高考试题。例1(2017年新课标全国卷Ⅱ理21题)已知函数f(x)=ax2-ax-xln x,对f(x)≥0恒成立,求a的值。解析:分离函数得a(x-1)≥ln x对x∈(0,+∞)恒成立,令g(x)=a(x-1),h(x)  相似文献   

7.
正导数的主要作用是研究函数的单调性,利用导数可以判断函数的单调性,求函数的单调区间,求函数的极值,最值以及解决恒成立问题中参数的范围问题.下面通过一道常见的习题及其变形来探究导数的应用.引例已知定义在R上的函数f(x)=x2-3x-m.讨论函数f(x)的单调性,并求出其单调区间和极值.  相似文献   

8.
一、利用零点法判定函数的单调性 在函数f(x)的定义域内(或指定区间上)任取x1〈x2,作差f(x1)-f(x2)并因式分解变形,记其中关于x1,x2且不能确定符号的式子为g(x1,x2),然后令g(x1,x2)=0,且x1=x2=x0,从中解出x0,x0是函数f(x)的单调区间的端点,然后就可以利用单调性的定义确定函数的单调区间及单调性,下面举例说明。  相似文献   

9.
设函数f(x)定义在区间I上且x1,x2∈I,则①若函数f(x)在区间I上是单调增(或减)函数,则x1f(x2)).②若函数f(x)在区间I上是单调函数,则x1=x2f(x1)=f(x2).③若函数f(x)在区间I上是单调函数,则方程f(x)=0在区间I上至多有一个实数根.④若函数f(x)与g(x)的单调性相同,则在它们公共的定义域内,函数f(x) g(x)亦与它们的单调性相同.⑤复合函数y=f(u)(u=g(x))的单调性适合“同增异减”规律,即若f(x)与g(x)的单调性相同(或相异),则y=f[g(x)]为增(或减)函数.⑥互为反函数的两个函数在各自的定义域内具有相同的单调性.运用…  相似文献   

10.
在求函数f(x)=f1(x)+f2(x)的最值时,如果f1(x)与f2(x)的单调性不一致,就难以直接应用函数的单调性求解,这时我们可以构造一个与f(x)相关且单调性容易确定的函数g(x),利用函数的单调性求出g(x)的最值,再求f(x)的最值.例1求函数f(x)=x2+1√-x(x≥0)的最大值.解析因x2+1√与-x在犤0,+∞)上的单调性不一致,故f(x)的单调性不易观察,此时可将f(x)进行分子有理化,变形为f(x)=1x2+1√+x.易知:g(x)=x2+1√+x在犤0,+∞)上单调递增,∴犤g(x)犦min=g(0)=1,∴…  相似文献   

11.
<正>含参变量的不等式恒成立、存在性问题在高考试题中经常出现,这类问题主要采用函数最值法和参数分离法来解决.最值法是利用f(x,a)≥0(≤0)恒成立(a为参数,x∈D)等价于x∈D时f(x,a)min≥0(f(x,a)max≤0);而参数分离法是将f(x,a)≥0(≤0)在x∈D时恒成立,转化为h(x)≥g(a)(x∈D)恒成立,然后求出h(x)的最小值m,转化为解关于a的不等式g(a)≤m.什么时候选择函数最值法?什么时候选择分离参数法?笔者试通过几例略加说明,以期对我们的解题有所启发.  相似文献   

12.
不等式的证明方法有比较法、分析法、综合法、归纳法等等,但对于一类不等式,有时不如利用函数性质及图象来证明更显得直观形象。我们知道,若在含有字母的式子中,如若认定某一字母为自变量,而另一些字母看成是一定范围内的常数,那么不等式便成了以选定为自变量的那个字母的一元一次或一元高次不等式,进而可以以此字母为变量构成函数。因此,我们可利用函数的性质来证明某些不等式。 (一) 利用函数的单调性证明不等式大家知道,若函数y=f(x)定义在x∈[m,n]上(m0;同样,如若y=f(x)在x∈[m,n]上是单调递减函数,又f(n)≥0,那么y=f(x)在x∈(m,n)上恒有f(x)>0。根据此性质可证明如下的一些问题。  相似文献   

13.
管宏斌 《新高考》2008,(1):35-36
这是湖北武汉2007年高三调研卷中的一道题:已知函数 f(x)=x~2+2x+alnx.(1)若函数 f(x)在区间(0,1]上恒为单调函数,求实数 a 的取值范围;(2)当 t≥1时,不等式 f(2t—1)≥2f(t)—3恒成立,求实数 a 的取值范围.此题要利用导数知识作工具,研究函数的单调性,处理不等式恒成立问题.  相似文献   

14.
正题1设函数f(x)1=lnx+1/x,已知xf(x1)=f(x2),x2x10.求证:x1+x22.参考答案的思路是用函数的单调性证明x1+x22,主要步骤有:一是引入函数g(x)=f(2-x)与h(x)=f(x)-g(x),并结合导数研究其单调性;二是证明当x1时h(x)0即f(x)g(x);三是结合已知并根据以上两步推出x1+x22.详细过程类似于  相似文献   

15.
在以前高中数学教材中,我们往往只能用一些代数的方法来研究函数的单调性问题.由于教材内容的限制,这些方法往往运算繁琐,不易掌握其规律.例如,给出一个在某区间上可导的含参数的单调函数,要我们求参数的范围问题,大家往往解答不够完整.下面给大家引入一个定理,能为我们解决这类问题提供依据.定理若函数f(x)在(a,b)内可导,则函数f(x)在(a,b)内单调递增(或单调递减)的充要条件是在(a,b)内f′(x)≥0(或f′(x)≤0).证明必要性:设函数f(x)在(a,b)内单调递增,对任意x∈(a,b)及自变量的改变量Δx,(使x Δx∈(a,b)),由于函数f(x)在(a,b)内单调递增,…  相似文献   

16.
函数的单调性是函数的一个极其重要的性质,在高三的复习中经常会碰到有关函数单调性求解的问题,有的同学感到束手无策.如何去研究呢?下面通过例子来说明此类问题的求解思路.一、掌握几种常见函数的单调性,会求复合函数的单调区间复习过程中要熟练掌握几种常见函数(如一次函数、二次函数、反比例函数、指、对数函数及三角函数)的单调性,并能利用复合函数单调性的性质求解复合函数的单调区间.例1 (1989年高考)已知f(x)=8 2x- x2,如果g(x)=f(2-x2),那么g(x)( ) (A)在区间(-1,0)上是减函数 (B)在区间(0,1)上是减函数 (C)在区间(-2,0)上是增函数 (D)在区间(0,2)上是增函数  相似文献   

17.
函数的单调性是函数最重要的性质之一,而利用导数解决函数的单调性问题,是近几年高考考查的重点和热点之一,也是学生感到比较棘手的一类问题.该类问题主要有两种类型:一是利用导数判断函数的单调性;二是由函数在某区间上的单调性求参数的取值范围.类型一利用导数判断函数的单调性解决此类问题的依据是:设函数f(x)在某个区间(a,b)内的导数为f’(x),则(1)若f’(x)>0,则函数f(x)在区间(a,b)内递增;  相似文献   

18.
<正>函数的单调性问题、最值问题、某集合是另一集合的子集等问题都可以转化为不等式恒成立.本文探讨其中一类过特殊定点的函数不等式恒成立问题.重点探讨恒成立不等式f(x)≥y0(或f(x)≤y0)中参数a取值范围  相似文献   

19.
在中学数学教材中已介绍了基本初等函数的单调性,对于复合函数的单调性的判定却未讲。然而有些数学问题又涉及到复合函数单调性的判定,如近年高考数学试题中就有这类问题。因此寻求判定复合函数单调性的方法是有必要的,特别是简单易行的初等方法更利于中学数学教学。判定定理若函数u=g(x)在(a、b)上,函数y=f(u)在(g(a),g(b))或((g(b)、g(a))上,均为严格的单调函数, (1) 当u=g(x)和y=f(u)的增减性一致时,则复合函数y=F[g(x)]在(a、b)  相似文献   

20.
本文将推广关于复合函数单调性的结论,并得到用换元法来解决较为复杂函数的单调性的一般方法.关于复合函数的单调性,大家已熟悉如下结论:若y=f(x),x=g(t),x∈[m,n],t∈[a,b]都是单调函数,则复合函数y=f[g(t)]也是单调函数,并且当外层函数y=f(x)在[m,n]上为增  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号