首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
一、对于含有代数式a2-x2√的函数或方程,可设x=acosα(0≤α≤π)或x=asinα(-π2≤α≤π2).例1已知x1-y2√+y1-x2√=1,求u=x+y的取值范围.解由题意可知0≤x≤1,0≤y≤1,不妨设x=cosα,y=cosβ(0≤α≤π2,0≤β≤π2),代入已知条件中得cosα1-cos2β√+cosβ1-cos2α√=1,即sin(α+β)=1.∵0≤α≤π2,0≤β≤π2,0≤α+β≤π,∴α+β=π2,β=π2-α,∴u=x+y=cosα+cosβ=cosα+cos(π2-α)=cosα+sinα=2√sin(α+π4).∵π4≤α+π4≤34π,2√2≤sin(α+π4)≤1,即1≤2√sin(α+π4)≤2√,∴u=x+y的取值范围是犤1,2√犦.二、对于含有…  相似文献   

2.
一、利用三角函数的有界性利用正弦函数、余弦正数的有界性:|sinx|≤1,|cosx|≤1,可求形如y=Asin(ωx+φ),y=Acos(ωx+φ),(A≠0,φ≠0)的函数的最值.例1.(2000年全国高考题)已知函数y=12cos2x+3√2sinxcosx+1,x∈R,当函数y取得最大值时,求自变量x的集合.解:y=14(2cos2x-1)+14+3√4(2sinxcosx)+1=14cos2x+3√4sin2x+54=12sin(2x+π6)+54.y取得最大值必须且只需2x+π6=π2+2kπ,k∈Z即x=π6+kπ,k∈Z,所以当函数y取得最大值时,自变量x的集合为{x|x=π6+kπ,k∈Z}.二、转化为二次函数例2.求函数y=f(x)=cos22x-3cos2x+1的最值.解:∵f…  相似文献   

3.
一、三角函数取值范围的方程求法我们知道在sin~2a+cos~2α=·1中,运用换元,令cosα=x,sinα=y,就是x~2+y2=1.这样就可把求t=F(cosα,sinα)的范围化为在方程组{x~2+y~2}=1F(x,y)=t},中求t的取值范围.例1已知sinαcosβ=1/2,求t=cosαsi的取值范围.解令cosα=x,sinα=y,cosβ=m,sinβ=n,得方程组(?)消去m,n,y(过程略)得4x~4-(4t~2+3)x~2+4t~2=0(0≤x~2≤1)⑤在⑤中解出t~2求值域或解出x~2求定义域或用二次方程实根的分布方法可得0≤t2≤1/4,所以一1/2≤t≤1/2.例2已知sinα+sinβ=1,求t=cosαt+cosβ的取值  相似文献   

4.
1 .利用配方法化成只含有一个的三角函数【例 1】 求函数y =sin6 x +cos6 x的最值 .解 :y =sin6 x +cos6 x=(sin2 x +cos2 x) (sin4 x -sin2 xcos2 x +cos4 x)=(sin2 x+cos2 x) 2 -3sin2 xcos2 x=1-3sin2 xcos2 x =1-34 sin2 2x=58+ 38cos4x∴当x=kπ2 (k∈z)时 ,y取最大值为 1.当x=kπ2 + π4(k∈z)时 ,y取最小值 14∴ymax =1,ymin =142 .利用函数y =x+ ax(a >0 )的单调性【例 2】 求函数y =sin2 x + 3sin2 x(x≠kπ ,k∈z)的值域 .解 :设sin2 x =t(0 相似文献   

5.
许多三角最值问题,若用构造法求解,可使复杂问题简捷获解.这样不仅有利于数学思想的运用,而且有利于培养创新意识和创新能力.根据题设条件的特征,恰当构造一种新形式是灵活运用此法的关键,本文举例介绍几种方法.一、构造对偶式,用整体思想例1已知sin2α+sin2β+sin2γ=34,试求sin2α+sin2β+sin2γ的最大值.解:由sin2α+sin2β+sin2γ=34可得cos2α+cos2β+cos2γ=32.(1)构造对偶式sin2α+sin2β+sin2γ=x,(2)(1)2+(2)2得94+x2=3+2[cos(2α-2β)+cos(2β-2γ)+cos(2α-2γ)]≤3+2×3=9,其中等号可以在例如α=β=γ=π6时成立.∴x2≤274,|x|…  相似文献   

6.
已知sin xcos y=1/2,求cos xsin y的最大值与最小值.错解1:令cos xsin y=t则cos xsin y+sin xcos y=t+1/2,即sin(x+y)=t+1/2.由|sin(x+y)|≤1,得|t+1/21|≤1,解得  相似文献   

7.
一、知识归纳 1.任意角的三角函数 ①定义:设P(x,y)是角α终边上的任意一点,且|OP|=r(r>0),则 sinα=y/r,cosα=x/r,tanα=y/x,cotα=x/y,secα=r/x,cscα=r/y. ②符号法则 ③同角三角函数关系: sin2α+cos2α=1, cosα·secα=1, tanα=sinα/cosα, ④诱导公式: 1+tan2α=sec2α. sinα·cscα=1, cotα=cosα/sinα. 1+cot2α=csc2α, tanα·cotα=1,  相似文献   

8.
在直角坐标系xoy中,各象限的角平分线连同轴、y轴共八条射线,它们把直角坐标系分成八个区域,在各射线上标上相应的sinα+cosα的值,就可以很方便地判断出α的范围。如上图建立坐标系,设sinα+cosα=x,且α∈〔02π〕,A(1,1).〔结论1〕若1相似文献   

9.
题目 已知角α为锐角,则函数y=1/sinα+3√3/cosα的最小值为____.(第五届联盟杯) 1.多种解法 解法1 y=1/sinα+3√3/cosα,求导,得y′=-cosα/sin^2α+3√3sinα/cos^2α  相似文献   

10.
现行全日制普通中学数学教科书 (试验修订本·必修 )第二册 (上 )第七章“直线和圆的方程”中有这样一道习题 :求函数 f (θ) =sinθ- 1cosθ- 2 的最大值和最小值 .编者把此题放在这里 ,意图十分明显 ,就是可把 f (θ) =sinθ- 1cosθ- 2 看成是定点 ( 2 ,1 )与单位圆 x2 + y2= 1上的动点 ( cosθ,sinθ)连线的斜率 ,从而问题转化为求斜率的最大值和最小值 .笔者由此得到启发 ,对动点在常见曲线上的“分式三角函数”的最值问题作如下探讨 ,供教与学中参考 .1 构造直线例 1 求 y=3sin x- 1sin x+ 2 的最值 .分析 因为 y=3sin x- 1sin x- …  相似文献   

11.
文 1、文 2分别利用图象法和均值代换法解决了一类在给定条件下三角函数取值范围问题 .本文利用函数的单调性来解决这类问题 (下面的例子都是文 1、2中的例题 ,以后不再说明 ) .例 1 已知 sin x+ 2 cos y=2 ,求 2 sin x+ cos y的取值范围 .解 由条件得 sin x=2 ( 1 - cos y) ,1∴ 2 sin x+ cos y=4 - 3cos y,2由 1 ,有 2 | ( 1 - cos y) | =| sin x|≤ 1 ,∴ 12 ≤cos y≤ 32 .又 | cos y|≤ 1 ,∴ 12 ≤cos y≤ 1 . 3令 t=cos y,则由 2 ,3有2 sin x+ cos y=4 - 3t,其中 t∈ [12 ,1 ].令 f( t) =4 - 3t ( 12 ≤ t≤ 1 ) .易知 f( t)在 [12…  相似文献   

12.
题目已知cos(α+π/4)=3/5,2/π≤α<3/2π求cod(2α+π/4) 解法1由cos(α+π/4)=3/5,可得cosα-sinα=3√2/5…(1)再由sin2α+cos2α-1,得:2cos2α-6√2/5cosα-7/25-0,解得cosα=-√2/10或7√2/10,又π/2≤α<3/2π,所以cosα=-√2/10,sinα=-7√2/10,所以cos2α=cos2α-sin2α=-24/25,sin2α=7/25所以cos(2α+π/4)=√2/2(cos2α-sin2α)=-31√2/50.  相似文献   

13.
三角代换巧解不等式问题,即根据题目的特点,选取恰当的三角代换,能达到化难为易,化繁为简的目的,它是解不等式问题常用的方法,现举例说明. 例1 已知a,b,x,y∈R,且a2 +b2=1,x2+y2=1,求ax+ by的范围. 解:通过观察已知条件我们不难发现:令{a=sinα,b=cosα,{x=sinβ,y=cosβ,则ax+by=sinαsinβ+cosαcosβ=cos(α-β).  相似文献   

14.
第 31届西班牙数学奥林匹克第 2题是 :证明 :如果 ( x+ x2 + 1 ) ( y+ y2 + 1 )= 1 ,那么 x+ y=0 .文 [1 ]给出了此题的一种证法 ,本文再给出此题的两种换元证法 ,然后给出一个新命题 .证法 1 设 x=tanα,y=tanβ,其中 α,β∈ ( - π2 ,π2 ) ,则由条件知 ,( tanα+ secα) ( tanβ+ secβ) =1 ( sinα+ 1 ) ( sinβ+ 1 ) =cosαcosβ sinα+sinβ+ 1 =cos(α+β) 2 sinα+β2 cosα-β2 +1 =1 - 2 sin2 α+β2 sin α+β2 ( sin α+β2 +sinπ-α+β2 ) =0 sin α+β2 sin 2β+π4 ·cos2α-π4 =0 .又由 α,β∈ ( - π2 ,π2 ) ,知…  相似文献   

15.
变量代换是解数学题的一种重要策略 ,其中三角代换更是有着广泛而灵活的应用。它能使问题得到巧妙的转化 ,起到化繁为简、化难为易的作用。若运用得法 ,往往能收到事半功倍的效果。1 求最值例 1 已知 x21 6+y29=1 ,求u =x2 +2xy +y2 的最值 ,及相应的x ,y的值。解 据已知 ,可令x =4cosθ,y =3sinθ(θ∈R) ,则u =1 6cos2 θ +2 4sinθcosθ+9sin2 θ=72 cos2θ+1 2sin2θ +2 52 =2 52 sin( 2θ +φ) +2 52 ,其中cosφ =2 42 5 ,sinφ =72 5 ,且 0 <φ <π2 。由此可得 ,cos φ2 =721 0 ,sin φ2 =21 0 。当sin( 2θ +φ) =1时 ,取 2θ+…  相似文献   

16.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

17.
樊兴安 《数学教学通讯》2002,(2):48-48,F003
有很多函数的最值或值域问题可转化为求二次函数的最值或值域问题,而二次函数的最值或值域问题一般有两类:一类是在实数范围内的最值或值域,一类是在某一区间上的最值或值域.对于后者,有的题目中区间没有明确告之,而是隐含在题目的条件内.如果不能充分挖掘题目的隐含条件,往往会影响结果的正确性. 例 1 若sin2α+2sin2β=2cosα,求sin2α+sin2β的最大值和最小值. 错解:由条件得sin2β=cosα-1/2(sin2α)  相似文献   

18.
问题:求函数y=sin x cos x sin x cos x(x∈R)的最大值.解法1:y=sin x cos x sin x cosx2sin()1sin2=x π4 2x.当x π4=2kπ π2,即x=2kπ π4(k∈Z)时,2sin(x π/4)取得最大值2;当2x=2kπ π2,即x=kπ π4(k∈Z)时,sin2x/2取得最大值1/2;故当x=2kπ π/4(k∈Z)时,2sin(x π/4)  相似文献   

19.
求形如“函数y=a-bsinxc-dcosx的最值”问题的解法较多,从这些解法中可体现出一些数学思想.一、数形结合思想例1.求函数y=1+sinx2+cosx的最小值和最大值.分析:因函数y=1+sinx2+cosx的定义域为R,所以把1+sinx2+cosx可以看为点(cosθ,sinθ)与点(-2,-1)所在直线的斜率.而点(cosθ,sinθ)的轨迹是圆x2+y2=1,因而问题就成为点(-2,-1)与圆x2+y2=1上的动点的连线的斜率最大值、最小值问题.易知,过点(-2,-1)向圆x2+y2=1所作的两条切线的斜率的最大值和最小值就是函数的最大值和最小值.如图,用平面几何的知识得出斜率kBD为所求的最小值,斜率kBC为…  相似文献   

20.
求无理函数的最值问题 ,若用常规方法求解 ,对于有些题目来说就显得较为繁杂 ,计算量也较大 ,但若根据问题的特点巧妙地用三角代换来求解 ,则可把求无理函数的最值问题转化为求三角函数的最值问题 ,使问题得以简化 ,达到事半功倍的效果 .下面就介绍几类可用三角代换法来求无理函数最值的题型 ,仅供参考 .一、当函数的定义域为x∈ [0 ,a] (a >0 )时 ,可设x =asin2 θ ,θ∈ [0 ,π2 ]【例 1】 求函数y =1-x +x的最大值和最小值 .解 :∵函数的定义域为x∈ [0 ,1] ,∴可设x =sin2 θ ,θ∈ [0 ,π2 ]则原函数可化为y=sinθ +cosθ=2sin(θ+ π…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号