首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
现行高中数学教材 (试验修订本 ·必修第二册上 )第六章不等式中有一个章头图 ,它是不等式的一个基础图形 .本文对此图形给予解释并作进一步探究 ,然后适当推广运用 ,仅供教学参考 .为行文方便 ,图形字母略有变动 .1 章头图形的几何意义如右图所示 ,以AB为直径作⊙O ,作CD⊥AB ,OE ⊥AB ,且CF⊥OD .在Rt△OEC中 ,CE >OE ,在Rt△COD中OD >CD ,OE、OD为⊙O半径 ,故OE >CD .在Rt△FDC中 ,CD >DF ,综合起来有CE >OE >CD >DF . ①设b>a >0 ,在图中取AC=a ,BC=b ,于是有半径OE =a +b2 ,在⊙O中 ,根据圆的相交弦定理有C…  相似文献   

2.
九年级数学练习题中有一道题为:如图,△ABC中,∠C=90.,AB=c,A C=b,BC=a,求其内切圆⊙O的半径r. 解法一:根据三角形面积求连结AO、BO、CO. ∵SΔAOC=1/2AC·r SΔBOC=1/2 BC·r S△AOB=1/2AB·r ∴SΔABC=1/2AC·r+1/2BC·r+1/2AB·r=1/2r(a+b+c) 又S△ABC=1/2BC·AC=1/2ab ∴1/2r( a+b+c)=1/2ab ∴r=ab/a+b+c 解法二:利用切线长性质求 作OD⊥AC,OE⊥BC,OF⊥AB,则四边形DCEO为正方形.  相似文献   

3.
集锦     
正余弦和差化积公式的向量证明吴爱龙余建国(江西省丰城中学331100)曾兵(江西省丰城市第一中学331100)文[1]利用面积相等关系给出了正弦和差化积公式的一种构造证法,本文再给出正余弦和差化积公式的向量证法,供参考.图1证明如图1,设OA=(cosα,sinα),OB=(cosβ,sinβ)(0<β<α<π),则OA+OB=(cosα+cosβ,sinα+sinβ);OA-OB=(cosα-cosβ,sinα-sinβ).又以OA,OB为邻边作OACB,因为OA=OB=1,所以四边形OACB为菱形,作OE=BA,设AB与OC相交于D,则BA⊥OC,∠COB=α-2β,∠COx=α+2β,∠EOx=π2+∠COx=π2+α+2β;OC=2·OD=2co…  相似文献   

4.
我的姓名可好听啦,姓“黄金”,名“分割”,人们叫我“黄金分割”.其实,我这美妙的姓名,是有来由的.很久以前,古希腊学者欧多克斯(公元前408一前355年)最早提出:能否把一条线段分成两段,使其中较长的线段是原线段与较短线段的比例中项.人们经过反复实践,解决C了这一问题.如图1,取线段AB,作CB⊥AB,使 BC=1/2AB,连AC,在AC上取CD=BC,在AB上取AE=AD,则 AE~2=AB·BE,并用勾股定理证明了这个结论.证明∵(AD+DC )~2=BC~2+AB~2AD=AE.DC=1/2AB.AE~2+AE·AB-AB~2=0,………… ①AE~2=AB·(AB-AE)=AB·BE.由①得 AE=(?)·AB(只取正数).∴AE/AB≈0.618∴AE/AB≈0.618.  相似文献   

5.
与角平分线有关的证明问题在几何学习中屡见不鲜。由于角平分线具备“角相等”和“公共边”这两个自身条件,因此,解决这类问题,常可考虑沿角平分线两侧构造全等三角形的方法。例1如图1,在△ABC中,∠BAC的外角平分线上取一点D,连结BD、CD。求证:BD+CD>AB+AC·证明:在BA延长线上截取AE=AC,连结DE.图1∵∠1=∠2,AD公用∴△ADC≌△ADE∵ED=CD在△EBD中,ED+BD>BE,∴BD+CD>AB+AC·例2如图2,△ABC中,AD平分∠BAC交BC于D,AC=AB+BD·求证:∠ABC=2∠C·证明:延长AB到E,使AE=AC,连结DE·图2∵AE=AC,∠1=∠2,AD=A…  相似文献   

6.
我们熟知两异面直线上两点距离的公式,如图,异面直线a、b成角为θ,且与它们的公垂线L交于A、B,则a、b上两点E、F的距离: EF=(AB~2+AE~2+BF~2±2AE·BFcosθ)~(1/2)活用此公式,往往可收到化难为易,化繁为简的效果例1 棱锥S-ABCD,ABCD是矩形,AB=2~(1/2)。BC=1,SD⊥面AC,SB=2,求二面角A-SB-C的大小。解作AE⊥SB于E,作CF⊥SB于F,连AC。∵ SD⊥面AC,AB⊥AD,BC⊥CD。∴ AB⊥SA,BC⊥SC,则BE=AB~2/SB=1,AE=(AB~2-BE~2)~(1/2)=1,BF=BC~2/SB=1/2,CF=(BC~2-BF~2)~(1/2)=(3/2)~(1/2),EF=BE-BF=1/2,  相似文献   

7.
2006年全国初中数学竞赛预赛暨2005年山东省初中数学竞赛刚刚结束,其中第13题是这样的:如图1,△ABC中,AB=1,AC=2,D是BC的中点,AE平分∠BAC交BC于E,且DF∥AE,求CF的长.在参考解答中.提供了以下的解答方法:解如图2,过E分别作EH⊥AB,交AB于H,EG⊥AC,交AC于点G,因AE平分∠BAC,所以有EH=EG,从而有CBEE=SS△△AACBEE=AACB=21,又由DF∥AE,得CFCA=CCED=21·CBEC·21·BEC+ECE=12BECE+1=2112+1=43.所以CF=43×CA=43×2=23.图1图2在阅卷的过程中,我发现学生还有不同的解答方法:方法1如图3,过点D作DM∥AB交AC…  相似文献   

8.
(1999年山东省初中数学竞赛)如图1,AD是Rt△ABC斜边BC上的高,P是AD的中点,连结BP并延长交AC于E,已知AC:AB=R.求AE:EC.分析:由已知AC:AB=R,可求出BD:DC的值.根据Rt△ABD∽Rt△CBA,Rt△CAD∽Rt△CBA,可得AB2=BD·BC,AC~2=DC·BC,从而求得(BD)/(DC)=(AB~2)/(AC~2)=1/R~2,所以(BD)/(BC)=1/(1+R~2),然后再求AE:CE的值.我们知道要求比值,一般需借助于平行线,  相似文献   

9.
计算菱形面积时,如果已知其对角线长,可运用公式S_(菱形ABCD)=1/2AC·BD.公式的证明如下:如图1.设对角线AC、BD相交于点O.由菱形的对角线互相垂直,知AC⊥BD,从而OD、OB分别为△ACD、△ACB中AC边上的高,因此有S_(菱形ABCD)=S_(△ABC)+S(△ADC)=1/2AC·OB+ 1/2AC·OD=1/2AC·BD.  相似文献   

10.
三角中的许多问题,如果能充分利用三角函数和题目的特点。将其转化为有关图形问题,往往使得解题简洁明了,形象直观,本文通过一些例子说明图化三角问题的几条途径。一、化归为单位圆由于sin~2α+cos~2α=1,所以往往可以把点P(sinα,cosα)看作是单位圆上的点,通过对单位圆的研究,解决三角函数问题  相似文献   

11.
平面几何的证明一般都是根据几何公理、定理进行逻辑推理论证 ,似乎与所学的锐角三角函数没有关系。事实上 ,借助于锐角三角函数证明几何题 ,则出奇制胜 ,巧妙之处 ,令人拍手叫绝。现举例如下 :一、求证线段及线段的乘方间的关系图 1例 1.已知 :如图 1,∠BAC=90°,AD⊥ BC,DE⊥ AB,DF⊥AC,垂足分别为 D、E、F,求证 :AB3AC3=BECF(教材第二册 5.4 B组第 3题 )证明 :设∠ C =α,则∠ BDE=∠DAE=α在 Rt△ABC中 ,tgα=ABAC,∴ AB3AC3=tg3α;在 Rt△ BED中 ,BE=DEtgα;在 Rt△ CFD中 ,FC=DFctgα;在 Rt△ AED中 ,tgα…  相似文献   

12.
高中数学教材(人教版2004年6月版)第二册,介绍了构造几何图形证明均值不等式,这是一种构思新颖,技巧性较强,能使问题直观、简捷地求解的方法,就证明不等式而言,最常选用的是特殊的、简单的几何图形.一、构造三角形证明不等式某些不等式通过对题设条件或结论进行分析,合理地构造出三角形,利用三角形的边长关系进行推理而获得证明.例1已知a,b,m均为正数,且aa/b.证明以a为直角边,b为斜边作Rt△ABC,延长AC至E,使CE=m,过E作DE⊥上AE交AB的延长线于点D,如图1.设BD=n,则n>m.过B作BF∥AE,交DE于F,因为△ABC∽△ADE,所以a/b=AC/AB=AE/AD=a+m/b+n因为n>m,所以a+m/b+m>a+m/b+n,所以a+m/b+m>a/b.YSW2006.12实战实例27  相似文献   

13.
证明含三角函数的几何等式,不少同学感到难以下手,如应用锐角三角函数的定义,将式子中的三角函数转换为两线段的比,从而将问题转化为线段的等比(积),常可迎刃而解。 例1 如图1,△ABC中,以BC为直径的半圆分别和AB、AC交于D、E.求证:DE=BCcosA (1994,西安市中考题) 分析:连BE,则∠BEC=90°,△ABE为直角三角形,从而命题转化为证明DE=BC·AE/AB,即证DE/BC=AE/AB. 为此,可证△ADE∽△ACB. 由∠ADE=∠ACB,∠A=∠A.命题获证.  相似文献   

14.
题目已知:在△ABC 中,AB=AC,D 是 BC 边上一点.求证:AB~2=AD~2+BD·CD.思路分析1:因为 BD、CD 在同一边上,从而考虑相交弦定理,于是作△ABC 的外接圆进行论证.证法1:作△ABC 的外接圆 O,延长AD 交⊙O于 E,连结 BE(如图1),∵AB=AC,∴∠1=∠E.∴△ABD∽△AEB,∴AB~2=AD·AE=AD·(AD+DE)=AD~2+AD·DE.  相似文献   

15.
例1 如图1,以△ABC的BC边为直径的半圆交AB于D,交AC于E,EF⊥BC于F,BF:FC =5:1,AB=8,AE=2.求:AD的长.  相似文献   

16.
性质:如图1,△ABC中,AB=AC,D为BC上任意一点,则AC2-AD2=BD·CD.证明过点A作AO⊥BC,垂足为O.因为AC2=AO2+OC2,AD2=AO2+OD2,所以AC2-AD2=(AO2+OC2)-(AO2+OD2)=OC2-OD2=(OC+OD)(OC-OD)=CD(OC-  相似文献   

17.
一、知识归纳 1.任意角的三角函数 ①定义:设P(x,y)是角α终边上的任意一点,且|OP|=r(r>0),则 sinα=y/r,cosα=x/r,tanα=y/x,cotα=x/y,secα=r/x,cscα=r/y. ②符号法则 ③同角三角函数关系: sin2α+cos2α=1, cosα·secα=1, tanα=sinα/cosα, ④诱导公式: 1+tan2α=sec2α. sinα·cscα=1, cotα=cosα/sinα. 1+cot2α=csc2α, tanα·cotα=1,  相似文献   

18.
典型例题例1如图,ΔABC中,AB=AC,D、E分别是AB和AB延长线上的点,∠DCB=∠ECB,则AB是AD和AE的比例中项(即AB^2=AD&;#183;AE),为什么?  相似文献   

19.
一、试题及简解题目如图1,在半径为2的扇形AOB中,∠AOB=90°,点C是AB上的一个动点(不与A、B重合),OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不  相似文献   

20.
合分比定理(若a/b=c/d,则(a+b)/(a+b)=(c+d)/(c-d))在代数和几何方面的广泛应用,不少书刊中已作过阐述。但合分比定理在三角学中的应用,却谈得较少。其实,在证明三角恒等式或求值时,应用合分比定理常能简捷地得到答案。本文想通过以下几道例题进行说明。例1 tg~2α=1+2tg~2β,求证 cos~2β==1十cos2α。证先将已知条件变形为 (tg~2α)/1=(1+2tg~2β)/1,应用合分比定理得, (1-tg~2α)/(1+tg~2α)=(-2tg~2β)/(2(1+tg~2β)),而(1-tg~2α)/(1+tg~2α)=cos2α,(-2tg~2β)/2(1+tg~2β)=1/(1+tg~2β)-1=cos~2β-1,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号