首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Abstract

Graded exercise tests are commonly used to assess peak physiological capacities of athletes. However, unlike time trials, these tests do not provide performance information. The aim of this study was to examine the peak physiological responses of female outrigger canoeists to a 1000-m ergometer time trial and compare the time-trial performance to two graded exercise tests performed at increments of 7.5 W each minute and 15 W each two minutes respectively. 17 trained female outrigger canoeists completed the time trial on an outrigger canoe ergometer with heart rate (HR), stroke rate, power output, and oxygen consumption ([Vdot]O2) determined every 15 s. The mean (± s) time-trial time was 359 ± 33 s, with a mean power output of 65 ± 16 W and mean stroke rate of 56 ± 4 strokes · min?1. Mean values for peak [Vdot]O2, peak heart rate, and mean heart rate were 3.17 ± 0.67 litres · min?1, 177 ± 11 beats · min?1, and 164 ± 12 beats · min?1 respectively. Compared with the graded exercise tests, the time-trial elicited similar values for peak heart rate, peak power output, peak blood lactate concentration, and peak [Vdot]O2. As a time trial is sport-specific and can simultaneously quantify sprint performance and peak physiological responses in outrigger canoeing, it is suggested that a time trial be used by coaches for crew selection as it doubles as a reliable performance measure and a protocol for monitoring peak aerobic capacity of female outrigger canoeists.  相似文献   

2.
The aim of this study was to establish a graded exercise test protocol for determining the peak physiological responses of female outrigger canoeists. Seventeen trained female outrigger canoeists completed two outrigger ergometer graded exercise test protocols in random order: (1) 25 W power output for 2 min increasing by 7.5 W every minute until exhaustion; and (2) 25 W power output for 2 min increasing by 15 W every 2 min to exhaustion. Heart rate and power output were recorded every 15 s. Expired air was collected continuously and sampled for analysis at 15-s intervals, while blood lactate concentration was measured immediately after and 3, 5, and 7 min after exercise. The peak physiological and performance variables examined included peak oxygen uptake (VO2peak), minute ventilation, tidal volume, ventilatory thresholds 1 and 2, respiratory rate, respiratory exchange ratio, heart rate, blood lactate concentration, power output, performance time, and time to VO2peak. There were no significant differences in peak physiological responses, ventilatory thresholds or performance variables between the two graded exercise test protocols. Despite no significant differences between protocols, due to the large limits of agreement evident between protocols for the peak physiological responses, it is recommended that the same protocol be used for all comparison testing to minimize intra-individual variability of results.  相似文献   

3.
Abstract

The aim of this study was to establish a graded exercise test protocol for determining the peak physiological responses of female outrigger canoeists. Seventeen trained female outrigger canoeists completed two outrigger ergometer graded exercise test protocols in random order: (1) 25 W power output for 2 min increasing by 7.5 W every minute until exhaustion; and (2) 25 W power output for 2 min increasing by 15 W every 2 min to exhaustion. Heart rate and power output were recorded every 15 s. Expired air was collected continuously and sampled for analysis at 15-s intervals, while blood lactate concentration was measured immediately after and 3, 5, and 7 min after exercise. The peak physiological and performance variables examined included peak oxygen uptake ([Vdot]O2peak), minute ventilation, tidal volume, ventilatory thresholds 1 and 2, respiratory rate, respiratory exchange ratio, heart rate, blood lactate concentration, power output, performance time, and time to [Vdot]O2peak. There were no significant differences in peak physiological responses, ventilatory thresholds or performance variables between the two graded exercise test protocols. Despite no significant differences between protocols, due to the large limits of agreement evident between protocols for the peak physiological responses, it is recommended that the same protocol be used for all comparison testing to minimize intra-individual variability of results.  相似文献   

4.
In this study, we assessed age-related changes in indoor 16.1-km cycling time-trial performance in 40 competitive male cyclists aged 25-63 years. Participants completed two tests: (1) a maximal ramped Kingcycle ergometer test, with maximal ramped minute power (RMPmax, W) recorded as the highest mean external power during any 60 s and maximal heart rate (HRmax, beats min(-1)) as the highest value during the test; and (2) an indoor Kingcycle 16.1-km time-trial with mean external power output (W), heart rate (beats min(-1)), and pedal cadence (rev min(-1)) recorded throughout the event. Results revealed age-related declines (P < 0.05) in absolute and relative time-trial external power output [(24 W (7.0%) per decade], heart rate [7 beats min(-1) (3.87%) per decade], and cadence [3 rev min(-1) (3.1%) per decade]. No relationships (P > 0.05) were observed for mean power output and heart rate recorded during the time-trial versus age when expressed relative to maximal ramped minute power and maximal heart rate respectively. Strong relationships (P < 0.05) were observed for maximal ramped minute power and time-trial power (r= 0.95) and for maximal heart rate and time-trial heart rate (r= 0.95). Our results show that indoor 16.1-km time-trial performance declines with age but relative exercise intensity (%RMPmax and %HRmax) does not change.  相似文献   

5.
The aim of this study was to compare the cycling performance of cyclists and triathletes. Each week for 3 weeks, and on different days, 25 highly trained male cyclists and 18 highly trained male triathletes performed: (1) an incremental exercise test on a cycle ergometer for the determination of peak oxygen consumption (VO2peak), peak power output and the first and second ventilatory thresholds, followed 15 min later by a sprint to volitional fatigue at 150% of peak power output; (2) a cycle to exhaustion test at the VO2peak power output; and (3) a 40-km cycle time-trial. There were no differences in VO2peak, peak power output, time to volitional fatigue at 150% of peak power output or time to exhaustion at VO2peak power output between the two groups. However, the cyclists had a significantly faster time to complete the 40-km time-trial (56:18 +/- 2:31 min:s; mean +/- s) than the triathletes (58:57 +/- 3:06 min:s; P < 0.01), which could be partially explained (r = 0.34-0.51; P < 0.05) by a significantly higher first (3.32 +/- 0.36 vs 3.08 +/- 0.36 l x min(-1)) and second ventilatory threshold (4.05 +/- 0.36 vs 3.81 +/- 0.29 l x min(-1); both P < 0.05) in the cyclists compared with the triathletes. In conclusion, cyclists may be able to perform better than triathletes in cycling time-trial events because they have higher first and second ventilatory thresholds.  相似文献   

6.
In this study, we assessed the performance of trained senior (n = 6) and veteran (n = 6) cyclists (mean age 28 years, s = 3 and 57 years, s = 4 respectively). Each competitor completed two cycling tests, a ramped peak aerobic test and an indoor 16.1-km time-trial. The tests were performed using a Kingcycle ergometer with the cyclists riding their own bicycle fitted with an SRM powermeter. Power output, heart rate, and gas exchange variables were recorded continuously and blood lactate concentration [HLa] was assessed 3 min after the peak ramped test and at 2.5-min intervals during the time-trial. Peak values for power output (RMP(max)), heart rate (HR(peak)), oxygen uptake (VO2(peak)), and ventilation (V(Epeak)) attained during the ramped test were higher in the senior group (P < 0.05), whereas [HLa](peak), RER(peak), V(E): VO2(peak), and economy(peak) were similar between groups (P > 0.05). Time-trial values (mean for duration of race) for power output (W(TT)), heart rate (HR(TT)), VO2 (VO(2TT)), and V(E) (V(ETT)) were higher in the seniors (P < 0.05), but [HLa](TT), RER(TT), V(ETT): VO2(TT), and economy(TT) were similar between the groups (P > 0.05). Time-trial exercise intensity, expressed as %RMP(max), %HR(peak), % VO2(peak), and % V(Epeak), was similar (P > 0.05) for seniors and veterans (W(TT): 81%, s = 2 vs. 78%, s = 8; HR(TT): 96%, s = 4 vs. 94%, s = 4; VO2(TT): 92%, s = 4 vs. 95%, s = 10; V(ETT): 89%, s = 8 vs. 85%, s = 8, respectively). Overall, seniors attained higher absolute values for power output, heart rate, VO2, and V(E) but not blood lactate concentration, respiratory exchange ratio (RER), V(E): VO2, and economy. Veterans did not accommodate age-related declines in time trial performance by maintaining higher relative exercise intensity.  相似文献   

7.
High retest reliability is desirable in tests used to monitor athletic performance, but the reliability of many popular tests has not been established. The aim of this study was to determine the reliability of performance of a 2000-m time-trial lasting approximately 7 min performed on a Concept II rowing ergometer. Eight well-trained rowers (peak oxygen uptake 61+/-5 ml x kg(-1) x min(-1); mean +/- standard deviation) performed the time-trials on three occasions at 3-day intervals. Mean power (313+/-38 W in trial 1) improved by 2.3% (95% confidence interval 0.1 to 4.5%) in trial 2 and by a further 0.9% (-1.4 to 3.3%) in trial 3. The variability of performance for individual rowers expressed as a coefficient of variation for mean power was 2.0% (1.3 to 3.1%), and the retest correlation was 0.96 (0.87 to 0.99). Variability and changes in performance expressed as time to complete the test were approximately one-third those of mean power, apparently because simulated velocity is proportional to the cube root of power on this ergometer. Such high reliability makes this combination of ergometer, athlete and test protocol very suitable for monitoring rowing performance and for investigating factors that affect performance in short, high-intensity endurance events.  相似文献   

8.
The aims of this study were to compare the physiological and anthropometric characteristics of successful mountain bikers and professional road cyclists and to re-examine the power-to-weight characteristics of internationally competitive mountain bikers. Internationally competitive cyclists (seven mountain bikers and seven road cyclists) completed the following tests: anthropometric measurements, an incremental cycle ergometer test and a 30 min laboratory time-trial. The mountain bikers were lighter (65.3+/-6.5 vs 74.7+/-3.8 kg, P= 0.01; mean +/- s) and leaner than the road cyclists (sum of seven skinfolds: 33.9+/-5.7 vs 44.5+/-10.8 mm, P = 0.04). The mountain bikers produced higher power outputs relative to body mass at maximal exercise (6.3+/-0.5 vs 5.8+/-0.3 W x kg(-1), P= 0.03), at the lactate threshold (5.2+/-0.6 vs 4.7+/-0.3 W x kg(-1), P= 0.048) and during the 30 min time-trial (5.5+/-0.5 vs 4.9+/-0.3 W x kg(-1), P = 0.02). Similarly, peak oxygen uptake relative tobody mass was higher in the mountain bikers (78.3+/-4.4 vs 73.0+/-3.4 ml x kg(-1) x min(-1), P = 0.03). The results indicate that high power-to-weight characteristics are important for success in mountain biking. The mountain bikers possessed similar anthropometric and physiological characteristics to previously studied road cycling uphill specialists.  相似文献   

9.
The aim of this study was to predict indoor rowing performance in 12 competitive female rowers (age 21.3 +/- 3.6 years, height 1.68 +/- 0.54 m, body mass 67.1 +/- 11.7 kg; mean +/- s) using a 30 s rowing sprint, maximal oxygen uptake and the blood lactate response to submaximal rowing. Blood lactate and oxygen uptake (VO2) were measured during a discontinuous graded exercise test on a Concept II rowing ergometer incremented by 25 W for each 2 min stage; the highest VO2 measured during the test was recorded as VO2max (mean = 3.18 +/- 0.35 l.min-1). Peak power (380 +/- 63.2 W) and mean power (368 +/- 60.0 W) were determined using a modified Wingate test protocol on the Concept II rowing ergometer. Rowing performance was based on the results of the 2000 m indoor rowing championship in 1997 (466.8 +/- 12.3 s). Laboratory testing was performed within 3 weeks of the rowing championship. Submitting mean power (Power), the highest and lowest five consecutive sprint power outputs (Maximal and Minimal), percent fatigue in the sprint test (Fatigue), VO2max (l.min-1), VO2max (ml.kg-1.min-1), VO2 at the lactate threshold, power at the lactate threshold (W), maximal lactate concentration, lactate threshold (percent VO2max) and VEmax (l.min-1) to a stepwise multiple regression analysis produced the following model to predict 2000 m rowing performance: Time2000 = -0.163 (Power) -14.213.(VO2max l.min-1) +0.738.(Fatigue) 7.259 (R2 = 0.96, standard error = 2.89). These results indicate that, in the women studied, 75.7% of the variation in 2000 m indoor rowing performance time was predicted by peak power in a rowing Wingate test, while VO2max and fatigue during the Wingate test explained an additional 12.1% and 8.2% of the variance, respectively.  相似文献   

10.
The aim of this study was to compare accumulated oxygen deficit data derived using two different exercise protocols with the aim of producing a less time-consuming test specifically for use with athletes. Six road and four track male endurance cyclists performed two series of cycle ergometer tests. The first series involved five 10 min sub-maximal cycle exercise bouts, a VO2peak test and a 115% VO2peak test. Data from these tests were used to estimate the accumulated oxygen deficit according to the calculations of Medb? et al. (1988). In the second series of tests, participants performed a 15 min incremental cycle ergometer test followed, 2 min later, by a 2 min variable resistance test in which they completed as much work as possible while pedalling at a constant rate. Analysis revealed that the accumulated oxygen deficit calculated from the first series of tests was higher (P < 0.02) than that calculated from the second series: 52.3 +/- 11.7 and 43.9 +/- 6.4 ml x kg(-1), respectively (mean +/- s). Other significant differences between the two protocols were observed for VO2peak, total work and maximal heart rate; all were higher during the modified protocol (P < 0.01 and P < 0.02, respectively). Oxygen kinetics were also significantly faster during the modified 2 min maximal test. We conclude that the difference in accumulated oxygen deficit between protocols was probably due to a reduced oxygen uptake, possibly caused by a slower oxygen on-response during the 115% VO2peak test in the first series, and VO2-power output regression differences caused by an elevated VO2 during the early stages of the second series.  相似文献   

11.
The aim of the present study was to examine the effect of ingesting 75 g of glucose 45 min before the start of a graded exercise test to exhaustion on the determination of the intensity that elicits maximal fat oxidation (Fatmax). Eleven moderately trained individuals (VO2max: 58.9 +/- 1.0 ml x kg(-1) x min(-1); mean +/- sx), who had fasted overnight, performed two graded exercise tests to exhaustion, one 45 min after ingesting a placebo drink and one 45 min after ingesting 75 g of carbohydrate in the form of glucose. The tests started at 95 W and the workload was increased by 35 W every 3 min. Gas exchange measures and heart rate were recorded throughout exercise. Fat oxidation rates were calculated using stoichiometric equations. Blood samples were collected at rest and at the end of each stage of the test. Maximal fat oxidation rates decreased from 0.46 +/- 0.06 to 0.33 +/- 0.06 g min(-1) when carbohydrate was ingested before the start of exercise (P < 0.01). There was also a decrease in the intensity which elicited maximal fat oxidation (60.1 +/- 1.9% vs 52.0+3.4% VO2max) after carbohydrate ingestion (P < 0.05). Maximal power output was higher in the carbohydrate than in the placebo trial (346 +/- 12 vs 332 +/- 12 W) (P < 0.05). In conclusion, the ingestion of 75 g of carbohydrate 45 min before the onset of exercise decreased Fatmax by 14%, while the maximal rate of fat oxidation decreased by 28%.  相似文献   

12.
The aims of this study were two-fold: (1) to consider the criterion-related validity of the multi-stage fitness test (MSFT) by comparing the predicted maximal oxygen uptake (.VO(2max)) and distance travelled with peak oxygen uptake (VO(2peak)) measured using a wheelchair ergometer (n = 24); and (2) to assess the reliability of the MSFT in a sub-sample of wheelchair athletes (n = 10) measured on two occasions. Twenty-four trained male wheelchair basketball players (mean age 29 years, s = 6) took part in the study. All participants performed a continuous incremental wheelchair ergometer test to volitional exhaustion to determine .VO(2peak), and the MSFT on an indoor wooden basketball court. Mean ergometer .VO(2peak) was 2.66 litres . min(-1) (s = 0.49) and peak heart rate was 188 beats . min(-1) (s = 10). The group mean MSFT distance travelled was 2056 m (s = 272) and mean peak heart rate was 186 beats . min(-1) (s = 11). Low to moderate correlations (rho = 0.39 to 0.58; 95% confidence interval [CI]: -0.02 to 0.69 and 0.23 to 0.80) were found between distance travelled in the MSFT and different expressions of wheelchair ergometer .VO(2peak). There was a mean bias of -1.9 beats . min(-1) (95% CI: -5.9 to 2.0) and standard error of measurement of 6.6 beats . min(-1) (95% CI: 5.4 to 8.8) between the ergometer and MSFT peak heart rates. A similar comparison of ergometer and predicted MSFT .VO(2peak) values revealed a large mean systematic bias of 15.3 ml . kg(-1) . min(-1) (95% CI: 13.2 to 17.4) and standard error of measurement of 3.5 ml . kg(-1) . min(-1) (95% CI: 2.8 to 4.6). Small standard errors of measurement for MSFT distance travelled (86 m; 95% CI: 59 to 157) and MSFT peak heart rate (2.4 beats . min(-1); 95% CI: 1.7 to 4.5) suggest that these variables can be measured reliably. The results suggest that the multi-stage fitness test provides reliable data with this population, but does not fully reflect the aerobic capacity of wheelchair athletes directly.  相似文献   

13.
The aims of this study were to examine the use of the critical velocity test as a means of predicting 2000-m rowing ergometer performance in female collegiate rowers, and to study the relationship of selected physiological variables on performance times. Thirty-five female collegiate rowers (mean ± s: age 19.3 ± 1.3 years; height 1.70 ± 0.06 m; weight 69.5 ± 7.2 kg) volunteered to participate in the study. Rowers were divided into two categories based on rowing experience: varsity (more than 1 year collegiate experience) and novice (less than 1 year collegiate experience). All rowers performed two continuous graded maximal oxygen consumption tests (familiarization and baseline) to establish maximal oxygen uptake (VO(2max)), peak power output, and power output at ventilatory threshold. Rowers then completed a critical velocity test, consisting of four time-trials at various distances (400 m, 600 m, 800 m, and 1000 m) on two separate days, with 15 min rest between trials. Following the critical velocity test, rowers completed a 2000-m time-trial. Absolute VO(2max) was the strongest predictor of 2000-m performance (r = 0.923) in varsity rowers, with significant correlations also observed for peak power output and critical velocity (r = 0.866 and r = 0.856, respectively). In contrast, critical velocity was the strongest predictor of 2000-m performance in novice rowers (r = 0.733), explaining 54% of the variability in performance. These findings suggest the critical velocity test may be more appropriate for evaluating performance in novice rowers.  相似文献   

14.
It has previously been shown that the metabolic acidaemia induced by a continuous warm-up at the 'lactate threshold' is associated with a reduced accumulated oxygen deficit and decreased supramaximal performance. The aim of this study was to determine if an intermittent, high-intensity warm-up could increase oxygen uptake (VO2) without reducing the accumulated oxygen deficit, and thus improve supramaximal performance. Seven male 500 m kayak paddlers, who had represented their state, volunteered for this study. Each performed a graded exercise test to determine VO2max and threshold parameters. On subsequent days and in a random, counterbalanced order, the participants then performed a continuous or intermittent, high-intensity warm-up followed by a 2 min, all-out kayak ergometer test. The continuous warm-up consisted of 15 min of exercise at approximately 65% VO2max. The intermittent, high-intensity warm-up was similar, except that the last 5 min was replaced with five 10 s sprints at 200% VO2max, separated by 50 s of recovery at approximately 55% VO2max. Significantly greater (P < 0.05) peak power (intermittent vs continuous: 629 +/- 199 vs 601 +/- 204 W) and average power (intermittent vs continuous: 328 +/- 39.0 vs 321 +/- 42.4 W) were recorded after the intermittent warm-up. There was no significant difference between conditions for peak VO2, total VO2 or the accumulated oxygen deficit. The results of this study indicate that 2 min all-out kayak ergometer performance is significantly better after an intermittent rather than a continuous warm-up.  相似文献   

15.
The aim of the present study was to examine the relationship between the performance heart rate during an ultra-endurance triathlon and the heart rate corresponding to several demarcation points measured during laboratory-based progressive cycle ergometry and treadmill running. Less than one month before an ultra-endurance triathlon, 21 well-trained ultra-endurance triathletes (mean +/- s: age 35 +/- 6 years, height 1.77 +/- 0.05 m, mass 74.0 +/- 6.9 kg, = 4.75 +/- 0.42 l x min(-1)) performed progressive exercise tests of cycle ergometry and treadmill running for the determination of peak oxygen uptake (VO2peak), heart rate corresponding to the first and second ventilatory thresholds, as well as the heart rate deflection point. Portable telemetry units recorded heart rate at 60 s increments throughout the ultra-endurance triathlon. Heart rate during the cycle and run phases of the ultra-endurance triathlon (148 +/- 9 and 143 +/- 13 beats x min(-1) respectively) were significantly (P < 0.05) less than the second ventilatory thresholds (160 +/- 13 and 165 +/- 14 beats x min(-1) respectively) and heart rate deflection points (170 +/- 13 and 179 +/- 9 beats x min(-1) respectively). However, mean heart rate during the cycle and run phases of the ultra-endurance triathlon were significantly related to (r = 0.76 and 0.66; P < 0.01), and not significantly different from, the first ventilatory thresholds (146 +/- 12 and 148 +/- 15 beats x min(-1) respectively). Furthermore, the difference between heart rate during the cycle phase of the ultra-endurance triathlon and heart rate at the first ventilatory threshold was related to marathon run time (r = 0.61; P < 0.01) and overall ultra-endurance triathlon time (r = 0.45; P < 0.05). The results suggest that triathletes perform the cycle and run phases of the ultra-endurance triathlon at an exercise intensity near their first ventilatory threshold.  相似文献   

16.
The purpose of this study was to assess the power output of field-based downhill mountain biking. Seventeen trained male downhill cyclists (age 27.1 +/- 5.1 years) competing nationally performed two timed runs of a measured downhill course. An SRM powermeter was used to simultaneously record power, cadence, and speed. Values were sampled at 1-s intervals. Heart rates were recorded at 5-s intervals using a Polar S710 heart rate monitor. Peak and mean power output were 834 +/- 129 W and 75 +/- 26 W respectively. Mean power accounted for only 9% of peak values. Paradoxically, mean heart rate was 168 +/- 9 beats x min(-1) (89% of age-predicted maximum heart rate). Mean cadence (27 +/- 5 rev x min(-1)) was significantly related to speed (r = 0.51; P < 0.01). Analysis revealed an average of 38 pedal actions per run, with average pedalling periods of 5 s. Power and cadence were not significantly related to run time or any other variable. Our results support the intermittent nature of downhill mountain biking. The poor relationships between power and run time and between cadence and run time suggest they are not essential pre-requisites to downhill mountain biking performance and indicate the importance of riding dynamics to overall performance.  相似文献   

17.
We describe the physiological characteristics of amateur outrigger canoe paddlers. Twenty-one paddlers (13 males, 8 females) were evaluated for body stature, aerobic power, muscular strength and endurance, peak paddle force, flexibility and 250 m sprint paddle performance at the end of the outrigging season. The mean variables (+/- s) for the males were: age 27 +/- 9 years, height 175 +/- 5 cm, body mass 80 +/- 5 kg, arm span 178 +/- 7 cm, sitting height 100 +/- 2 cm, aerobic power 3.0 +/- 0.4 l x min(-1), maximum bench press strength 85 +/- 19 kg, right peak paddle force 382 +/- 66 N and left peak paddle force 369 +/- 69 N. For the females, these were: age 26 +/- 6 years, height 168 +/- 5 cm, body mass 70 +/- 8 kg, arm span 170 +/- 5 cm, sitting height 97 +/- 3 cm, aerobic power 2.3 +/- 0.51 l x min(-1), maximum bench press strength 47 +/- 10 kg, right peak paddle force 252 +/- 63 N and left peak paddle force 257 +/- 60 N. Analysis of variance revealed differences (P < 0.05) between the dominant and non-dominant sides of the body for peak paddle force, isokinetic internal and external rotation, and flexion and extension torque of the shoulder joint. The outrigger canoe paddlers were generally within the range of scores found to describe participants of other water craft sports. Outrigger canoeists should be concerned with the muscular strength imbalances associated with paddling technique.  相似文献   

18.
The aim of this study was to establish the relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m time-trial on a Concept II Model B rowing ergometer. The participants were 13 male club standard oarsmen. Their mean (+/- s) age, body mass and height were 19.9+/-0.6 years, 73.1+/-6.6 kg and 180.5+/-4.6 cm respectively. The participants were tested on the rowing ergometer to determine their maximal oxygen uptake (VO2max), rowing economy, predicted velocity at VO2max, velocity and VO2 at the lactate threshold, and their velocity and VO2 at a blood lactate concentration of 4 mmol x l(-1). Percent body fat was estimated using the skinfold method. The velocity for the 2000 m performance test and the predicted velocities at the lactate threshold, at a blood lactate concentration of 4 mmol x l(-1) and at VO2max were 4.7+/-0.2, 3.9+/-0.2, 4.2+/-0.2 and 4.6+/-0.2 m x s(-1) respectively. A repeated-measures analysis of variance showed that the three predicted velocities were all significantly different from each other (P<0.05). The VO2max and lean body mass showed the highest correlation with the velocity for the 2000 m time-trial (r = 0.85). A stepwise multiple regression showed that VO2max was the best single predictor of the velocity for the 2000 m time-trial; a model incorporating VO2max explained 72% of the variability in 2000 m rowing performance. Our results suggest that rowers should devote time to the improvement of VO2max and lean body mass.  相似文献   

19.
In this study, we examined the effects of upper-body pre-cooling before intermittent sprinting exercise in a moderate environment. Seven male and three female trained cyclists (age 26.8+/-5.5 years, body mass 68.5+/-9.5 kg, height 1.76+/-0.13 m, V O2peak 59.0+/-11.4 mL. kg(-1). min(-1); mean+/-s) performed 30 min of cycling at 50% V O2peak interspersed with a 10-s Wingate cycling sprint test at 5 min intervals. The exercise was performed in a room controlled at 22 degrees C and 40% relative humidity. In the control session, the participants rested for 30 min before exercise. In the pre-cooling session, the participants wore the upper segment of a liquid conditioning garment circulating 5 degrees C coolant until rectal temperature decreased by 0.5 degrees C. Rectal temperature at the start of exercise was significantly lower in the pre-cooling (36.5+/-0.3 degrees C) than in the control condition (37.0+/-0.5 degrees C), but this difference was reduced to a non-significant 0.4 degrees C throughout exercise. Mean skin temperature was significantly lower in the pre-cooling (30.7+/-2.3 degrees C) than in the control condition (32.5+/-1.6 degrees C) throughout exercise. Heart rate during submaximal exercise was similar between the two conditions, although peak heart rate after the Wingate sprints was significantly lower in the pre-cooling condition. With pre-cooling, mean peak power (909+/-161 W) and mean overall power output (797+/-154 W) were similar to those in the control condition (peak 921+/-163 W, mean 806+/-156 W), with no differences in the subjective ratings of perceived exertion. These results suggest that upper-body pre-cooling does not provide any benefit to intermittent sprinting exercise in a moderate environment.  相似文献   

20.
This study was designed to examine the magnitude and duration of excess postexercise oxygen consumption (EPOC) following upper body exercise, using lower body exercise for comparison. On separate days and in a counterbalanced order, eight subjects (four male and four female) performed a 20-min exercise at 60% of mode-specific peak oxygen uptake (VO2) using an arm crank and cycle ergometer. Prior to each exercise, baseline VO2 and heart rate (HR) were measured during the final 15 min of a 45-min seated rest. VO2 and HR were measured continuously during the postexercise period until baseline VO2 was reestablished. No significant difference between the two experimental conditions was found for magnitude of EPOC (t [7] = 0.69, p greater than .05). Mean (+/- SD) values were 9.2 +/- 3.3 and 10.4 +/- 5.8 kcal for the arm crank and cycle ergometer exercises, respectively. Duration of EPOC was relatively short and not significantly different (t [7] = 0.24, p greater than .05) between the upper body (22.9 +/- 13.7 min) and lower body (24.2 +/- 19.4 min) exercises. Within the framework of the chosen exercise conditions, these results suggest EPOC may be related primarily to the relative metabolic rate of the active musculature, as opposed to the absolute exercise VO2 or quantity of active muscle mass associated with these two types of exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号