首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
<正>一、知识梳理1.平面向量的数量积。(1)定义:已知两个非零向量a与b,它们的夹角为θ,则数量|a||b|cosθ叫做a与b的数量积(或内积),记作a·b,即a·b=|a||b|cosθ,规定零向量与任一向量的数量积为0,即0·a=0。(2)几何意义:数量积a·b等于a的长度|a|与b在a的方向上的投影|b|cosθ的乘积。2.平面向量数量积的运算律。(1)a·b=b·a(交换律)。  相似文献   

2.
向量作为一个基本工具,在数学解题中有着极其重要的地位与作用,其中向量的数量积是向量中的重中之重,但教材中对于数量积的几何意义只给出了定义:数量积a·b等于a的长度|a|与b在a方向上的投影|b |cosθ的乘积.  相似文献   

3.
<正>一般地,根据向量数量积的定义a·b=|a||b|cosθ,为求向量a与b的数量积a·b,往往需明确这两个向量的模及所成的夹角θ.仔细分析有关向量数量积的问题,发现其中有一类向量题,其题设条件不是按三要素|a|、|b|、θ全部给定来设计,而是以向量投影为背景进行设计,即以|a|、|b|cosθ  相似文献   

4.
正1问题的提出随着高中数学课标课程的实施,使得许多新知识进入了高中数学教材,同时也进入了高考试题.其中,线性规划问题就是这样一种知识.线性规划问题几乎是每年高考必考的内容,而且其理论和方法在实际生活中有着广泛的应用.因而,线性规划问题解法的研究,就成为一个重要的课题.2理论基础①平面向量数量积的几何意义:数量积a?b等于a的长度|a|与b在a方向上的投影|b|cosθ的乘积.即a?b=|a|?|b|cosθ,θ∈[0,π].②平面向量数量积的坐标表示:两个向量的数量积等于它们对应坐标乘积的和.即设1 1a=(x,y),2 2b=(x,y),则1 2 1 2a?b=x x+y y.  相似文献   

5.
1平面向量数量积的定义及其几何意义①定义:已知2个非零向量a和b,它们的夹角为θ,则把数量|a|.|b|cosθ叫做a与b的数量积(内积).记作a.b,即a.b=|a|.|b|cosθ.  相似文献   

6.
题目 已知→a,→b是平面内两个互相垂直的单位向量,若向量→c满足(→a-→c)·(→b-→c)=0,则|→c|的最大值是() A.1 B.2 C.√2 D.√2/2 错解:因→a ⊥→b,所以→a·→b=0,由(→a-→c)·(→b-→c)=0得→a·→b-→c·(→a+→b)+|→c| 2 =0,即得|→c|2=→c·(→a+→b),两端平方得|→c| 4=[→c·(→a+→b)]2,|→c|4=(→c)2·(→a+→b)2,即|→c|4=(→c)2[(→a)2+(→b)2+2→a· →b],即|→c| 4=|→c|2[1+1+0],即|→c| 4=2|→c|2,|→c|2 =2,即|→c|=√2,所以,|→c|为定值,最大值和最小值都是√2,故正确选项为C.  相似文献   

7.
众所周知,对于两个非零向量的数量积有如下定义:a·b=|a|·|b|cosθ,其中θ=为两向量的夹角.这使得我们在求两个非零向量的数量积时,既要考虑它们的模又要顾及到它们的夹角.而在一般的几何(非坐标运算)问题中,一般都会优先给出有  相似文献   

8.
两个非零向量的数量积的定义式a·b= |a||b|cosθ含有"角"和"长度";而该式又可变形为a·btanθ=|a||b|sinθtanθ,此式与三角形正弦面积有关;数量积还有坐标形式a·b =x1x2 y1y2.因此,通过数量积可沟通长度、角、坐标及三角形面积之间的关系.利用数量积解题,可以避繁就简.以下列举其在圆锥曲线中的应用.  相似文献   

9.
平面向量的数量积是一个重点、难点,学生对平面向量的数量积及其性质的应用,感到困难、或无从下手,甚至回避.本文从以下几个方面讲解它的性质及应用. 两个非零向量a和b,它们的夹角为θ,把数量|a||b|cosθ叫做a和b的数量积(或内积),即a·b=|a||b|cosθ  相似文献   

10.
向量作为一个基本工具,在数学解题中有着极其重要的地位与作用,其中向量的数量积是向量中的重中之重,但教材中对于数量积的几何意义只给出了定义:数量积a·b等于a的长度|a|与b在a方向上的投影|b|cosθ的乘积.由此几何意义可看出:b在a方向上的投影为|b|cosθ=|a·a|b.本  相似文献   

11.
当今高考数学命题注重知识的整体性和综合性,重视知识的交汇性,向量是新课程新增内容,具有代数与几何形的双重身份·它是新旧知识的一个重要的交汇点,向量与三角的交汇是当今高考命题的一个热点·一、向量与三角函数性质的沟通向量的坐标形式中,我们可以用三角函数来表示,这是向量和三角沟通的一个渠道,此时通过向量的数量积和模我们可以构造三角函数,从而解决三角函数的性质·例1已知向量→a=(cos32x,sin32x),→b=(cos2x,-sin2x),且x∈[0,π2],求:①→a·→b及|→a →b|;②若f(x)=→a·→b-2λ|→a →b|的最小值是-23,求λ的值·分析:①→a…  相似文献   

12.
正1数量积的第二定义及推论1.1平面向量数量积的第二定义:我们知道现行普通高中课程标准实验教科书《数学》(必修4)上,对平面向量数量积(内积)是这样定义的:对于非零向量a,b,θ为向量a,b的夹角,则a·b=|a||b|cosθ,规定零向量与任一向量的数量积等于零.另外我们  相似文献   

13.
两个向量夹角的定义:已知非零向量a与b,作^→OA=a,^→OB=b,则∠AOB=θ(0&#176;≤θ≤180&#176;)叫做向量a与b的夹角.两个向量的数量积定义:两个非零向量a与b的夹角为θ,我们把|a|b|cosθ叫做a与b的数量积,记作a&#183;b=|a|b|cosθ.  相似文献   

14.
向量a与b之间的夹角定义为分别等于a和b并且具有公共始点的两个向量之间的夹角(Fig.1).向量a乘以向量b的数量积定义为ab,它等于这两个向量的绝对值与它们夹角的余弦的乘积,即ab=|a||b|cosθ.数量积具有如下可由定义直接推出的性质:(1)ab=ba;(2)a~2=aa=|a|~2;(3)(λa)b=λ(ab);  相似文献   

15.
<正>我们知道,两个向量a,b的数量积a·b=|a||b|cosθ,对于一类利用已知向量a,b表示的向量c=xa+yb,可以分别让c与a,b作数量积运算,从而建立x,y之间的等量关系.利用这一方法,能够简单地解决一类高考向量问题.下面举例说明.例1给定两个长度为1的平面向量  相似文献   

16.
在空间向量中,有公式a^→&#183;b^→=|a|^→&#183;|b|^→cosθ,若从向量的几何意义上去理解和应用该公式,将大放异彩.  相似文献   

17.
数量积是平面向量的一朵奇葩,运算彤式有a·6=|a| |b| cos α(0≤α≤π)与坐标表示a·6=x1x2 y1y22种.其几何意义是:a·6等于a的长度|a|与b在a方向上的投影|b|cos θ的乘积.  相似文献   

18.
向量数量积是向量一章的重点内容,是高中数学三角函数、解析几何、平面几何等章节知识的交汇点,也是高考重点考查的新双基知识.向量数量积的求解有两种常用方法:①直接运用定义运算,即a·b=|a|·|b|cos θ;②建系设点,代入坐标运算.在涉及数量积最值时,有时候可以根据数量积的几何意义直观判断.  相似文献   

19.
新教材中新增了向量的内容,其中两个向量的数量积有一个性质:a·b=|a|·|b|cosθ(其中θ为向量a与b的夹角),则|a·b|=||a|·|b|cosθ|,又-1≤cosθ≤1,则易得到以下推论:(1)a·b≤|a|·|b|;(2)|a·b|≤|a|·|b|;(3)当a与b同向时,a·b=|a|·|b|;当a与b反向时,a·b=-|a|·|b|;⑷当a与b共线时,|a·b|=|a|·|b|.下面例析以上推论在解不等式问题中的应用.一、证明不等式例1已知a、b∈R ,a b=1,求证:2a 1 2b 1≤22.证明:设m=(1,1),n=(2a 1,2b 1),则m·n=2a 1 2b 1,|m|=2,|n|=2a 1 2b 1=2.由性质m·n≤|m|·|n|,得2a 1 2b 1≤22.例2已知x y z=1,求…  相似文献   

20.
与函数最值相关的问题,贯穿于中学数学各章知识中,使用向量数量积a→.b→=|a→||b→|cosθ(θ为向量a→与b→的夹角)及其性质|a→·b→|≤|a→||b→|强以巧妙求解一些函数的最值,由a→·b→=|a→||b→|cosθ与三角函数的有界性可得|a→·b→|=|a→||b→|cosθ≤|a→||b→|,当且仅当a→//b→时等号成立。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号