首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Abstract

The current investigation aimed to determine whether there are differences in ball velocity and 3D kinematics when performing maximal kicks with the dominant and non-dominant limbs. Seventeen male academy soccer players performed maximal speed place kicks with their dominant and the non-dominant limbs. The 3D kinematics of the lower extremities were obtained using a 10-camera motion capture system operating at 500 Hz. Hip, knee and ankle joint kinematics were quantified in the sagittal, coronal and transverse planes and then contrasted using paired t-tests. Significantly higher ball velocities were obtained with the dominant limb. Foot linear velocity and knee extension velocity at ball contact were also found to be significantly greater in the dominant limb. That reduced ball velocities were observed between kicking limbs highlights the potential performance detriments that may occur when kicking with the non-dominant limb; thus, it is recommended that additional bilateral training be undertaken in order to attenuate this and improve overall kicking performance.  相似文献   

2.
The aims of this study were to gain insights on sepaktakraw serves, identify technique differences, and establish factors influencing ball speeds. The best successful kuda and sila serves of nine elite male national sepaktakraw players were captured using seven ProReflex 1000 optical cameras operating at 240 Hz. The kuda and sila serves are non-planar kicking techniques exhibiting a non proximal-to-distal sequence. Differences in kicking kinematics (P < 0.05) signify differences between techniques. Compared with the sila, the kuda kicking limb is a longer rigid segment that moves over a greater range of motion. Together with a greater increase in foot and shank angular accelerations approaching ball contact, this leads to marginally higher kuda foot impact speeds. Since foot speeds were not at their peak during impact, a longer rigid kuda kicking limb was the primary determinant of kuda ball release speeds. Greater range of motion enables the longer rigid kuda lever to generate greater kicking angular momentum, resulting in greater impact impulse. This immediately translated to the significantly higher ball release speeds based on the impulse–momentum relationship. Coaching implications include improving hip joint flexibility and working on a fluid movement of a longer rigid segment kicking technique.  相似文献   

3.
Abstract

The purpose of the present study was to compare the three-dimensional kinematics of the lower extremities and ground reaction forces between the instep kick and the kick with the outside area of the foot (outstep kick) in pubertal soccer players. Ten pubertal soccer players performed consecutive kicking trials in random order after a two-step angled approach with the instep and the outstep portion of the foot. Three-dimensional data and ground reaction forces were measured during kicking. Paired t-tests indicated significantly higher (P < 0.05) ball speeds and ball/foot speed ratios for the instep kick compared with the outstep kick. Non-significant differences in angular and linear sagittal plane kinematic parameters, temporal characteristics, and ground reaction forces between the instep and outstep soccer kicks were observed (P > 0.05). In contrast, analysis of variance indicated that the outstep kick displayed higher hip internal rotation and abduction, knee internal rotation, and ankle inversion than the instep kick (P < 0.05). Our results suggest that the instep kick is more powerful than the outstep kick and that different types of kick require different types of skill training.  相似文献   

4.
The three-dimensional kinematics of international female footballers performing a simulated direct free kick (curve kick) were compared with those of an instep kick. Reflective markers attached to the participants were tracked by 17 Vicon cameras sampling at 250 Hz. Foot velocity at ball impact did not differ between the two types of kick, but the way in which foot velocity was generated did differ, with instep kicks using a faster approach velocity and greater linear velocities of the hip and knee, and curve kicks using a greater knee angular velocity at impact. In both types of kick, peak knee angular velocity and peak ankle linear velocity occurred at ball impact, providing biomechanical support to the common coaching recommendation of kicking through the ball. To achieve a curved ball trajectory, players should take a wide approach angle, point the support foot to the right of the intended target (for right-footed players), swing the kicking limb across the face of the goal, and impact the ball with the foot moving upwards and in an abducted position. This information will be useful to coaches and players in identifying the fundamental coaching points necessary to achieve a curved trajectory of the ball compared with the more commonly described instep kick kinematics.  相似文献   

5.
The purpose of this study was to determine whether joint velocities and segmental angular velocities are significantly correlated with ball velocity during an instep soccer kick. We developed a deterministic model that related ball velocity to kicking leg and pelvis motion from the initiation of downswing until impact. Three-dimensional videography was used to collect data from 16 experienced male soccer players (age = 24.8 ± 5.5 years; height = 1.80 ± 0.07 m; mass = 76.73 ± 8.31 kg) while kicking a stationary soccer ball into a goal 12 m away with their right foot with maximal effort. We found that impact velocities of the foot center of mass (CM), the impact velocity of the foot CM relative to the knee, peak velocity of the knee relative to the hip, and the peak angular thigh velocity were significantly correlated with ball velocity. These data suggest that linear and angular velocities at and prior to impact are critical to developing high ball velocity. Since events prior to impact are critical for kick success, coordination and summation of speeds throughout the kicking motion are important factors. Segmental coordination that occurs during a maximal effort kick is critical for completing a successful kick.  相似文献   

6.
Kicking for distance in Australian Rules football is an important skill. Here, I examine technical aspects that contribute to achieving maximal kick distance. Twenty-eight elite players kicked for distance while being videoed at 500 Hz. Two-dimensional digitized data of nine body landmarks and the football were used to calculate kinematic parameters from kicking foot toe-off to the instant before ball contact. Longer kick distances were associated with greater foot speeds and shank angular velocities at ball contact, larger last step lengths, and greater distances from the ground when ball contact occurred. Foot speed, shank angular velocity, and ball position relative to the support foot at ball contact were included in the best regression predicting distance. A continuum of technique was evident among the kickers. At one end, kickers displayed relatively larger knee angular velocities and smaller thigh angular velocities at ball contact. At the other end, kickers produced relatively larger thigh angular velocities and smaller knee angular velocities at ball contact. To increase kicking distance, increasing foot speed and shank angular velocity at ball contact, increasing the last step length, and optimizing ball position relative to the ground and support foot are recommended.  相似文献   

7.
In football, kicking with high ball velocity can increase scoring opportunities and reduce the likelihood of interception. Efficient energy transfer from foot to ball during impact is important to attain a high ball velocity. It is considered impact efficiency can be increased by reducing the change in ankle plantarflexion during foot–ball impact. However, conflicting evidence exists, questioning its effectiveness as a coaching cue. The aim of the present study was to systematically analyse joint stiffness, foot velocity and impact location with a mechanical kicking machine to determine if change in ankle plantarflexion during foot–ball impact and ball velocity are influenced. Sagittal plane data of the shank, foot and ball were measured using high-speed video (4,000 Hz). Increasing joint stiffness reduced change in ankle plantarflexion and increased ball velocity from a greater effective mass. Increasing foot velocity increased change in ankle plantarflexion and increased ball velocity. Distal impact locations increased change in ankle plantarflexion and reduced ball velocity as coefficient of restitution decreased. These results identify that change in ankle plantarflexion is a dependent variable during foot–ball impact and does not directly influence ball velocity. Coaches can assess ankle motion during impact to provide feedback to athletes on their impact efficiency.  相似文献   

8.
Many sports associated with anterior cruciate ligament (ACL) injury require athletes attend to a ball during participation. We investigated effects of attending to a ball on lower extremity mechanics during a side-cut maneuver and if these effects are consistent for males and females. Sagittal and frontal plane hip and knee kinematics and joint moments were measured during side-cut maneuvers in 19 male and 19 female National Collegiate Athletic Association division III basketball players. Participants also experienced two side-cut conditions that required attention to a ball. Our results did not indicate that the effect of attention varies with gender. However, during side-cut conditions while attending to a ball, internal knee adductor moment was 20% greater (p = 0.03) and peak knee flexion angle was 4° larger (p < 0.01). Females demonstrated 5° less hip flexion (p = 0.046), 12° less knee flexion (p < 0.01), and 4° more knee abduction (p = 0.026) at initial contact during all side-cut conditions than males. Attention to a ball may affect lower extremity mechanics relevant to ACL injury. The validity of laboratory studies of lower extremity mechanics for sports that include attention to a ball may be increased if participants are required to attend to a ball during the task.  相似文献   

9.
During a soccer match, players are often required to control the ball velocity of a kick. However, little information is available for the fundamental qualities associated with kicking at various effort levels. We aimed to illustrate segmental dynamics of the kicking leg during soccer instep kicking at submaximal efforts. The instep kicking motion of eight experienced university soccer players (height: 172.4 ± 4.6 cm, mass: 63.3 ± 5.2 kg) at 50, 75 and 100% effort levels were recorded by a motion capture system (500 Hz), while resultant ball velocities were monitored using a pair of photocells. Between the three effort levels, kinetic adjustments were clearly identified in both proximal and distal segments with significantly different (large effect sizes) angular impulses due to resultant joint and interaction moments. Also, players tended to hit an off-centre point on the ball using a more medial contact point on the foot and with the foot in a less upright position in lower effort levels. These results suggested that players control their leg swing in a context of a proximal to distal segmental sequential system and add some fine-tuning of the resultant ball velocity by changing the manner of ball impact.  相似文献   

10.
The players' ability to achieve the greatest distance in kicking is determined by their efficiency in transferring kinetic energy from the body to the ball. The purpose of this study was to compare the kinetics and kinematics of the plant leg position between male and female collegiate soccer players during instep kicking. Twenty-three soccer players (11 males and 12 females) were filmed in both the sagittal and posterior views while performing a maximal instep kick. Plant leg kinetic data were also collected using an AMTI 1000 force platform. There were no significant differences between the sexes in plant leg position, but females had significantly greater trunk lean, plant leg angle, and medial-lateral ground reaction force than the males. Males showed higher vertical ground reaction forces at ball contact, but there were no significant differences in ball speed at take-off between the sexes. Ball speed at take-off was inversely related to peak anterior–posterior ground reaction force ( ? 0.65). The anatomical differences between the sexes were reflected in greater trunk lean and lower leg angle in the females.  相似文献   

11.
ABSTRACT

A possible link between soccer-specific injuries, such as groin pain and the action of hip adductor muscles has been suggested. This study aimed to investigate neuromuscular activation of the adductor magnus (AM) and longus (AL) muscles during instep and side-foot soccer kicks. Eight university soccer players performed the two types of kick at 50%, 75% and 100% of the maximal ball speed. Surface electromyography (EMG) was recorded from the AM, AL, vastus lateralis (VL) and biceps femoris (BF) muscles of both kicking and supporting legs and the kicking motions were three-dimensionally captured. In the kicking leg, an increase in surface EMG with an increase in ball speed during instep kicking was noted in the AM muscle (p < 0.016), but not in AL, VL or BF muscles (p > 0.016). In the supporting leg, surface EMG of both AM and AL muscles was significantly increased with an increase in the ball speed before ball impact during both instep and side-foot kicks (p < 0.016). These results suggest that hip adductor muscles markedly contribute to either the kicking or supporting leg to emphasise the action of soccer kicks.  相似文献   

12.
This study identified and compared the full body kinematics of different skill levels in the forehand groundstroke when balls were hit cross court and down the line. Forty-three three-dimensional retro-reflective marker trajectories of six elite and seven high-performance players were recorded using an eight-camera 400 Hz, Vicon motion analysis system. The six highest horizontal velocity forehands with reliable kinematics of all participants were analysed for each specific situation (a total of 156 analysed shots). Significant differences (p < 0.01) and large effect sizes were observed between elite and high-performance players in linear velocity of the shoulder (2.0 vs. 1.2 m/s), angular velocity of the pelvis (295 vs. 168 °/s), and angular velocity of the upper trunk (453 vs. 292 °/s) at impact. The elite group showed a tendency towards higher racquet velocities at impact (p < 0.05). No significant differences were found in angular displacement of the racquet, hip alignment, or shoulder alignment at the completion of the backswing; nor did angular displacement vary significantly at impact. Irrespective of the group, different shoulder, hip, and racquet angles were found at impact, depending on the situation. The results should assist coaches when striving to improve their players' forehand.  相似文献   

13.
The purpose of this paper was to establish postural cues in kicking that may be of use to goalkeepers. Eight male soccer players (age 20.5 ± 1.1 yrs; height 1.78 ± 0.053 m; mass 75.18 ± 9.66 kg) performed three types of kick: a low side-foot kick to the left hand corner of the goal, a low side-foot kick straight ahead, and a low instep kick straight ahead. Kicks were recorded by an optoelectronic motion analysis system at 240 Hz. At kicking foot take-off (about 200 ms before ball contact) the variables which were significantly different and could act as cues were support foot progression angle, pelvis rotation, and kicking hip and ankle flexion. The support foot progression angle was considered to be the most valuable of these variables as its angle coincided with the direction of ball projection. The other variables were less clear in their interpretation and so less valuable for a goalkeeper to use for decision making. Cues appearing after support foot contact were thought unlikely to be of value to a goalkeeper in their decision making. These include kicking leg knee flexion angle, and support leg shank and thigh angles.  相似文献   

14.
Purpose: The purpose of this study was to compare the kicking performance of young soccer players in the U9 to U20 age groups. Method: Three hundred and sixty-six Brazilian players were evaluated on an official pitch using three-dimensional kinematics to measure (300 Hz) ball velocity (Vball), foot velocity (Vfoot), Vball/Vfoot ratio, last stride length, and distance between the support foot and the ball. Simultaneously, a two-dimensional procedure was also conducted to compute (60 Hz) the mean radial error, bivariate variable error, and accuracy. Possible age-related differences were assessed through one-way analysis of variance and magnitude-based inferences. Results: Ball velocity increased by 103% (p < .001, η2 = .39) from the U11 age group (48.54 ± 8.31 km/hr) to the U20 age group (98.74 ± 16.35 km/hr). Foot velocity presented a 59% increase (p < .001, η2 = .32) from the U11 age group (49.08 ± 5.16 km/hr) to U20 (78.24 ± 9.49 km/hr). This finding was due to improvement in the quality of foot–ball impact (Vball/Vfoot ratio) from U11 (0.99 ± 0.13 a.u.) to U20 (1.26 ± 0.11 a.u.; p < .001, η2 = .25). Parameters such as mean radial error and accuracy appeared to be impaired during the growth spurt (U13–U15). Last stride length was correlated, low to moderately high, with Vball in all age groups (r = .36–.79). Conclusions: In summary, we concluded that simple biomechanical parameters of kicking performance presented distinct development. These results suggest that different training strategies specific for each age group could be applied. We provide predictive equations to aid coaches in the long-term monitoring process to develop the kick in soccer or search for talented young players.  相似文献   

15.
The aim of this study was to investigate the throwing velocity and kinematics of overarm throwing in team handball of elite female and male handball players. Kinematics and ball velocity of a 7 metre-throw in eleven elite male (age 23.6 ± 5.2 yr, body mass 87.0 ± 6.8 kg, height 1.85 ± 0.05 m) and eleven elite female (age 20.3 ± 1.8 yr, body mass 69.9 ± 5.5 kg, height 1.75 ± 0.05 m) team handball players were recorded. The analysis consisted of maximal joint angles, angles at ball release, maximal angular velocities of the joint movements, and maximal linear velocities of the distal endpoints of segments and their timing during the throw. The ball release velocity of the male handball players was significantly higher than the females (21.1 vs. 19.2 m · s(-1); p < 0.05). No major differences in kinematics were found, except for the maximal endpoint velocities of the hand and wrist segment, indicating that male and female handball players throw with the same technique. It was concluded that differences in throwing velocity in elite male and female handball players are generally not the result of changes in kinematics in the joint movements.  相似文献   

16.
The purposes of this research were to quantify the kinematics of the lacrosse shot, based on arm dominance and player experience level. Male players (N = 39; 14–30 years; high school [n = 24], collegiate [n = 9], professional [n = 6]), performed overhead shots using dominant and non-dominant sides. Motion was captured using a high-speed, 12-camera optical system and high-speed filming. Body segment rotational velocities and joint angles were determined at key points in the shot cycle from foot contact (0% of shot) to ball release (100% of shot). All players shot with less anterior trunk lean, less transverse shoulder rotation, and slower trunk-shoulder rotational velocities with the non-dominant side than the dominant side (all p < 0.05). Professional players produced crosse angular velocities 21% faster than high school or collegiate players (p < 0.05). Transverse shoulder rotation range of motion on both dominant and non-dominant and trunk rotation sides was highest in the professional players (p < 0.05). These kinematic features enable professional players to produce faster ball speeds than younger players (138 ± 7 km/h vs. 112 ± 15 km/h, respectively; p < 0.05). Less anterior lean or suboptimal rotation sequence could increase proximal shoulder forces that could contribute to injury as in other throwing sports.  相似文献   

17.
Kicking for distance in Australian Rules football is an important skill. Here, I examine technical aspects that contribute to achieving maximal kick distance. Twenty-eight elite players kicked for distance while being videoed at 500 Hz. Two-dimensional digitized data of nine body landmarks and the football were used to calculate kinematic parameters from kicking foot toe-off to the instant before ball contact. Longer kick distances were associated with greater foot speeds and shank angular velocities at ball contact, larger last step lengths, and greater distances from the ground when ball contact occurred. Foot speed, shank angular velocity, and ball position relative to the support foot at ball contact were included in the best regression predicting distance. A continuum of technique was evident among the kickers. At one end, kickers displayed relatively larger knee angular velocities and smaller thigh angular velocities at ball contact. At the other end, kickers produced relatively larger thigh angular velocities and smaller knee angular velocities at ball contact. To increase kicking distance, increasing foot speed and shank angular velocity at ball contact, increasing the last step length, and optimizing ball position relative to the ground and support foot are recommended.  相似文献   

18.
The aims of this study were to gain insights on sepaktakraw serves, identify technique differences, and establish factors influencing ball speeds. The best successful kuda and sila serves of nine elite male national sepaktakraw players were captured using seven ProReflex 1000 optical cameras operating at 240 Hz. The kuda and sila serves are non-planar kicking techniques exhibiting a non proximal-to-distal sequence. Differences in kicking kinematics (P < 0.05) signify differences between techniques. Compared with the sila, the kuda kicking limb is a longer rigid segment that moves over a greater range of motion. Together with a greater increase in foot and shank angular accelerations approaching ball contact, this leads to marginally higher kuda foot impact speeds. Since foot speeds were not at their peak during impact, a longer rigid kuda kicking limb was the primary determinant of kuda ball release speeds. Greater range of motion enables the longer rigid kuda lever to generate greater kicking angular momentum, resulting in greater impact impulse. This immediately translated to the significantly higher ball release speeds based on the impulse-momentum relationship. Coaching implications include improving hip joint flexibility and working on a fluid movement of a longer rigid segment kicking technique.  相似文献   

19.
Impact is an important aspect of the kicking skill. This study examined foot and ball motion during impact and compared distance and accuracy punt kicks. Two-dimensional high-speed video (4000 Hz) captured data of the shank, foot and ball through impact of 11 elite performers kicking for maximal distance and towards a target 20 m in distance. Four phases were identified during impact, with an overall reduction in foot velocity of 5.0 m · s?1 (± 1.1 m · s?1) and increase in ball velocity of 22.7 m · s?1 (± 2.3 m · s?1) from the start to end of contact. Higher foot velocity was found in distance compared to accuracy kicks (22.1 ± 1.6 m · s?1 vs. 17.7 ± 0.9 m · s?1, P < 0.05), and was considered to produce the significant differences in all impact characteristics excluding foot-to-ball speed ratio. Ankle motion differed between the kicking tasks; distance kicks were characterised by greater rigidity compared to accuracy kicks evident by larger force (834 ± 107 N vs. 588 ± 64 N) and smaller change in ankle angle (2.2 ± 3.3° vs. 7.2 ± 6.4°). Greater rigidity was obtained by altering the position of the ankle at impact start; distance kicks were characterised by greater plantarflexion (130.1 ± 5.8° vs. 123.0 ± 7.9°, P < 0.05), indicating rigidity maybe actively controlled for specific tasks.  相似文献   

20.
The aim of this study was to analyse the kinematic sequencing in the penalty-corner drag-flicks of elite male and female field hockey players of international calibre. Thirteen participants (one skilled male drag-flicker and six male and six female elite players) participated in the study. An optoelectronic motion analysis system was used to capture the drag-flicks with six cameras, sampling at 250 Hz. Select ground reaction force parameters were obtained from a force platform which registered the last support of the front foot. Twenty trials were captured from each subject. Both player groups showed significantly (p < 0.05) smaller ball velocity at release, peak angular velocity of the pelvis, and negative and positive peak angular velocities of the stick than the skilled subject. Normalised ground reaction forces of the gender groups were also smaller than that of the skilled drag-flicker. By comparing these players we established that the cues of the skill level are a wide stance, a whipping action (rapid back lift) of the stick followed by an explosive sequential movement of the pelvis, upper trunk and stick.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号