首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The latency of the peroneus longus may be a key factor in the prevention of lateral ankle sprains (LASs). In addition, ankle taping is often applied to help prevent LASs. The purpose of this study was to determine the effects of a previous LAS and ankle taping on the latency of the peroneus longus after an inversion perturbation. Twenty-six participants, including 13 participants with no previous history of a LAS and 13 participants with a history of a single LAS completed the testing. Ankle taping was applied in a closed basket weave technique on one of the two testing days. The latency of the peroneus longus was determined by the onset of muscle activity exceeding 10 SD from baseline activity, after initiation of the 25 degrees inversion perturbation. A significant main effect (p < 0.05) was present for the ankle support condition, with ankle taping causing a significant reduction in latency of the peroneus longus (65.04 +/- 10.81 to 57.70 +/- 9.39 ms). There was no difference (p > 0.05) in latency between the injury groups. Ankle taping, immediately after application, reduces the latency of the peroneus longus among participants with and without a history of a LAS.  相似文献   

2.
ABSTRACT

Ankle sprains are the most common injury in regular badminton players and usually occur at the end of a match or training. The purpose of the present study was to examine the influence of fatigue produced by badminton practice on the lower limb biomechanics of badminton players. It was hypothesized that fatigue induces ankle kinematic and lower leg muscle activity changes which may increase the risk of ankle sprain. Ankle kinematics, ankle kinetics and muscles activities of 17 regular badminton players were recorded during lateral jumps before and after an intense badminton practice session. Post-fatigue, ankle inversion at foot strike and peak ankle inversion increased (+2.6°, p = 0.003 and +2.5°, p = 0.005, respectively). EMG pre-activation within 100 ms before foot landing significantly decreased after fatigue for soleus (?23.4%, p = 0.031), gastrocnemius lateralis (?12.2%, p = 0.035), gastrocnemius medialis (?23.3%, p = 0.047) and peroneus brevis (?17.4%, p = 0.036). These results demonstrate impaired biomechanics of badminton players when fatigue increases, which may cause a greater risk of experiencing an ankle sprain injury.  相似文献   

3.
When the ankle is forced into inversion, the speed at which this movement occurs may affect the extent of injury. The purpose of this investigation was to develop a fulcrum device to mimic the mechanism of a lateral ankle sprain and to determine the reliability and validity of the temporal variables produced by this device. Additionally, this device was used to determine if a single previous lateral ankle sprain or ankle taping effected the time to maximum inversion and/or mean inversion speed. Twenty-six participants (13 with history of a single lateral ankle sprain and 13 with no history of injury) completed the testing. The participants completed testing on three separate days, performing 10 trials with the fulcrum per leg on each testing day, and tape was applied to both ankles on one testing day. No significant interactions or main effects were found for either previous injury or ankle taping, but good reliability was found for time to maximum inversion (ICC = .81) and mean inversion speed (ICC = .79). The findings suggest that although neither variable was influenced by the history of a single previous lateral ankle sprain or ankle taping, both variables demonstrated good reliability and construct validity, but not discriminative validity.  相似文献   

4.
Ankle taping is commonly used to prevent ankle sprains. However, kinematic assessments investigating the biomechanical effects of ankle taping have provided inconclusive results. This study aimed to determine the effect of ankle taping on the external ankle joint moments during a drop landing on a tilted surface at 25°. Twenty-five participants performed landings on a tilted force platform that caused ankle inversion with and without ankle taping. Landing kinematics were captured using a motion capture system. External ankle inversion moment, the angular impulse due to the medio-lateral and vertical components of ground reaction force (GRF) and their moment arm lengths about the ankle joint were analysed. The foot plantar inclination relative to the ground was assessed. In the taping condition, the foot plantar inclination and ankle inversion angular impulse were reduced significantly compared to that of the control. The only component of the external inversion moment to change significantly in the taped condition was a shortened medio-lateral GRF moment arm length. It can be assumed that the ankle taping altered the foot plantar inclination relative to the ground, thereby shortening the moment arm of medio-lateral GRF that resulted in the reduced ankle inversion angular impulse.  相似文献   

5.
Ankle sprain is a common injury in volleyball. Poor stabilometric performance (SP) is associated with high risks of sustaining ankle sprain. Balance training can improve SP and reduce ankle sprain, but no research has studied the effects of detraining on SP in highly trained athletes. The purpose of this study was to determine the effects of one-month postseason break on SP in female volleyball players. Eleven NCAA female volleyball players participated in two eye-closed single-leg stance tests before and after a one-month postseason break. Stance time, center of pressure (COP) area, COP standard deviation, and COP mean velocity were assessed during the tests. During the postseason break, subjects conducted self-selected exercise and the average training duration was 87% lower compared to the competition season. Subjects demonstrated significant increases in anterioposterior (A/P) COP standard deviation (1.6 ± 0.4 vs. 1.8 ± 0.4 cm, p = 0.05), mediolateral (M/L) COP velocity (6.5 ± 1.5 vs. 7.1 ± 1.3 cm/s, p = 0.05), and overall COP velocity (10.1 ± 2.0 vs. 11.6 ± 1.9 cm/s, p = 0.02) after postseason break. SP decreased in highly trained female volleyball players after one-month postseason break. The decrease in SP indicated a possible increased risk for ankle sprain injury.  相似文献   

6.
BackgroundChronic ankle instability (CAI) is a common sequela following an acute lateral ankle sprain (LAS). To treat an acute LAS more effectively and efficiently, it is important to identify patients at substantial risk for developing CAI. This study identifies magnetic resonance imaging (MRI) manifestations for predicting CAI development after a first episode of LAS and explores appropriate clinical indications for ordering MRI scans for these patients.MethodsAll patients with a first-episode LAS who received plain radiograph and MRI scanning within the first 2 weeks after LAS from December 1, 2017 to December 1, 2019 were identified. Data were collected using the Cumberland Ankle Instability Tool at final follow-up. Demographic and other related clinical variables, including age, sex, body mass index, and treatment were also recorded. Univariable and multivariable analyses were performed successively to identify risk factors for CAI after first-episode LAS.ResultsA total 131 out of 362 patients with a mean follow-up of 3.0 ± 0.6 years (mean ± SD; 2.0–4.1 years) developed CAI after first-episode LAS. According to multivariable regression, development of CAI after first-episode LAS was associated with 5 prognostic factors: age (odds ratio (OR) = 0.96, 95% confidence interval (95%CI): 0.93–1.00, p = 0.032); body mass index (OR = 1.09, 95%CI: 1.02–1.17, p = 0.009); posterior talofibular ligament injury (OR = 2.17, 95%CI: 1.05–4.48, p = 0.035); large bone marrow lesion of the talus (OR = 2.69, 95%CI: 1.30–5.58, p = 0.008), and Grade 2 effusion of the tibiotalar joint (OR = 2.61, 95%CI: 1.39–4.89, p = 0.003). When patients had at least 1 positive clinical finding in the 10-m walk test, anterior drawer test, or inversion tilt test, they had a 90.2% sensitivity and 77.4% specificity in terms of detecting at least 1 prognostic factor by MRI.ConclusionMRI scanning is valuable in predicting CAI after first-episode LAS for those patients with at least 1 positive clinical finding in the 10-m walk test, anterior drawer test, and inversion tilt test. Further prospective and large-scale studies are necessary for validation.  相似文献   

7.
A large proportion of elite cross-country skiers suffer from chronic anterior compartment syndrome (CACS). This study used surface electromyograms (EMGs) to investigate whether differences existed in the activation characteristics of the tibialis anterior muscle between elite cross-country skiers with a history of anterior compartment pain (symptomatic group) and a pain-free control group. Based on self-reported pain symptoms, twelve young, national-level cross-country ski athletes were assigned to a symptomatic group (N = 5), a control group (N = 4), or analyzed individually if their diagnosis was not certain (N = 3). During skating, EMGs were recorded on five lower leg muscles. The relative increase in EMG power per step when increasing the effort level of skating was larger in the symptomatic group than in the control group for tibialis anterior (143 ± 12% vs. 125 ± 23%; Cohen's d = 1.17), peroneus longus (123 ± 24% vs. 107 ± 6%; d = 0.91), and gastrocnemius lateralis (167 ± 51% vs. 117 ± 12%; d = 1.64). The symptomatic group showed more power in the lower frequency bands of the tibialis anterior's EMG spectra (p < 0.001), whereas no group differences were found in other muscles (all p>0.2). Within the step cycle, these differences appeared in the swing phase and in the gliding phase during single leg support. The observed differences in the EMG spectra may serve as an early identification of athletes who are at risk of developing CACS.  相似文献   

8.
Ankle sprains are one of the most severe musculoskeletal soft tissue injuries during physical activity. Although many risk factors have been offered, it is unclear why some individuals develop noncontact ankle sprains when participating in comparable levels of physical exertion under identical environmental conditions and others do not. The ACTN3 gene that encodes the α-actinin-3 protein, which is, only expressed in the Z line of fast glycolytic muscle fibres was found to associate with power/strength performance. The aim of this study was therefore to investigate whether the ACTN3 gene polymorphism is associated with noncontact acute ankle sprains. One hundred and forty-two participants with clinically diagnosed noncontact acute ankle sprains as well as 280 physically active controls participants without any history of ankle sprains were included in this case–control genetic association study. The RR genotype (odds ratio (OR) = 0.56; 95% confidence interval (CI), 0.32–0.65, P = 0.011) and R allele (OR = 0.64; 95% CI, 0.37–0.68, P = 0.002) of the ACTN3 were significantly low-represented in the acute ankle sprains group compared with the control group. The ACTN3 R577X is associated with acute ankle sprains in Chinese participants in this study. This is the first study to suggest that an individual with a RR genotype is at a decreased risk of acute ankle sprains.  相似文献   

9.
Ankle sprains are the most common injury in sport. With stability being an important risk factor for ankle sprains, a jump-landing protocol that can elicit differences in time-to-stabilisation (TTS) is necessary. The objective of this study was to develop a jump-landing protocol that could identify differences in TTS among healthy, ‘coper’, and unstable ankles of high-level athletes. 61 Division I collegiate athletes (32 females, 29 males; age: 19.9 ± 1.2 years; height: 176.6 ± 9.5 cm; mass: 74.3 ± 10.8 kg) participated in a jump-landing protocol that utilised sporting movements with preparatory steps and a vertical propulsion of the body in two multi-directional jumps. Utilising the landing on a force plate, ground reaction forces were used to quantify TTS. TTS of the unstable group (1.58 ± 0.62s) was significantly longer than the healthy (1.19 ± 0.37s; p = 0.050) and ‘coper’ (1.13 ± 0.49s; p = 0.019) groups in the forward hops. In addition, TTS of the lateral hops in the unstable group (1.55 ± 0.63s) was also significantly longer than the healthy (1.14 ± 0.37s; p = 0.026) and ‘coper’ (1.15 ± 0.39s; p = 0.028) groups. This new jump-landing protocol was able to elicit differences in TTS in high-level athletes that were not found using previous protocols. This new jump-landing protocol could be an effective tool to identify injury risk for high-level athletes.  相似文献   

10.
ABSTRACT

While foot orthoses are commonly used in running, little is known regarding biomechanical risk potentials during uphill running. This study investigated the effects of arch-support orthoses on kinetic and kinematic variables when running at different inclinations. Sixteen male participants ran at different inclinations (0°, 3° and 6°) when wearing arch-support and flat orthoses on an instrumented treadmill. Arch-support orthoses induced longer contact time, larger initial ankle dorsiflexion, maximum ankle eversion, and knee sagittal range of motion (RoM) (p < 0.05). As incline slopes increased, vertical impact peak and loading rate, stride length, and ankle coronal RoM decreased, but contact time, stride frequency, initial ankle dorsiflexion and inversion, maximum dorsiflexion, initial knee flexion, and ankle sagittal RoM increased (p < 0.05). Furthermore, knee sagittal RoM was lowest when running at an inclination of 3°. The interaction effect indicated that in arch-support condition, participants running at 6° induced higher maximum ankle eversion than running at 0° (p < 0.05), while no differences were found in flat orthosis condition. These findings suggest that the use of arch-support orthoses would influence running biomechanics that is related to injury risks. Running at higher inclination led to more alterations to biomechanical variables than at lower inclination.  相似文献   

11.
Abstract

Ankle sprains are a common injury and those affected are at a risk of developing chronic ankle instability (CAI). Complications of an acute sprain include increased risk of re-injury and persistent disability; however, the exact link between ankle sprains and chronic instability has yet to be elucidated. The purpose of this study was to investigate neuromuscular control (including kinematics, kinetics and EMG) during stepping down from a curb, a common yet challenging daily activity, in persons with ankle instability (n = 11), those with a history of ankle sprain without persistent instability, called ankle sprain “copers” (CPRs) (n = 9) and uninjured controls (CTLs) (n = 13). A significant group difference was noted as the CPR group demonstrated increased tibialis anterior activity in both the preparatory (pre-touchdown) and reactive (post-touchdown) phases when compared to healthy and unstable groups (P < 0.05). It follows that the CPR group also demonstrated a significantly less plantar-flexed position at touchdown than the other two groups (P < 0.05). This is a more stable position to load the ankle and this strategy differed from that used by participants with CAI and uninjured CTLs. These findings provide insight into the neuromuscular control strategies of CPRs, which may allow them to more appropriately control ankle stability following sprains.  相似文献   

12.
ABSTRACT

Unstable footwear may enhance training effects to the lower-limb musculature and sensorimotor system during dynamic gym movements. This study compared the instability of an unstable shoe with irregular midsole deformations (IM) and a control shoe (CS) during forward and lateral lunges. Seventeen female gym class participants completed two sets of ten forward and lateral lunges in CS and IM. Ground reaction forces, lower-limb kinematics and ankle muscle activations were recorded. Variables around initial ground contact, toe-off, descending and ascending lunge phases were compared statistically (p < .05). Responses to IM compared to CS were similar across lunge directions. The IM induced instability by increasing the vertical loading rate (p < .001, p = .009) and variability of frontal ankle motion during descending (p = .001, p < .001) and ascending phases (p = .150, p = .003), in forward and lateral lunges, respectively. At initial ground contact, ankle adjustments enhanced postural stability in IM. Across muscles, there were no activation increases, although results indicate peroneus longus activations increased in IM during the ascending phase. As expected, IM provided a more demanding training stimulus during lunge exercises and has potential to reduce ankle injuries by training ankle positioning for unpredictable instability.  相似文献   

13.
The treadmill is an attractive device for the investigation of human locomotion, yet the extent to which lower limb kinematics differ from overground running remains a controversial topic. This study aimed to provide an extensive three-dimensional kinematic comparison of the lower extremities during overground and treadmill running. Twelve participants ran at 4.0 m/s ( ± 5%) in both treadmill and overground conditions. Angular kinematic parameters of the lower extremities during the stance phase were collected at 250 Hz using an eight-camera motion analysis system. Hip, knee, and ankle joint kinematics were quantified in the sagittal, coronal, and transverse planes, and contrasted using paired t-tests. Of the analysed parameters hip flexion at footstrike and ankle excursion to peak angle were found to be significantly reduced during treadmill running by 12° (p = 0.001) and 6.6° (p = 0.010), respectively. Treadmill running was found to be associated with significantly greater peak ankle eversion (by 6.3°, p = 0.006). It was concluded that the mechanics of treadmill running cannot be generalized to overground running.  相似文献   

14.
The aim of this study was to examine lower limb joint kinetics during the block and first stance phases in athletic sprinting. Ten male sprinters (100 m PB, 10.50 ± 0.27 s) performed maximal sprint starts from blocks. External force (1000 Hz) and three-dimensional kinematics (250 Hz) were recorded in both the block (utilising instrumented starting blocks) and subsequent first stance phases. Ankle, knee and hip resultant joint moment, power and work were calculated at the rear and front leg during the block phase and during first stance using inverse dynamics. Significantly (P < 0.05) greater peak moment, power and work were evident at the knee joint in the front block and during stance compared with the rear block. Ankle joint kinetic data significantly increased during stance compared with the front and rear block. The hip joint dominated leg extensor energy generation in the block phase (rear leg, 61 ± 10%; front leg, 64 ± 8%) but significantly reduced during stance (32 ± 9%), where the ankle contributed most (42 ± 6%). The current study provides novel insight into sprint start biomechanics and the contribution of the lower limb joints towards leg extensor energy generation.  相似文献   

15.
This study examined use of an online social media physical activity (PA) challenge to encourage participants to complete at least 13 races in the year 2013. Following the challenge, researchers recruited participants through the Facebook group. Using the #13in2013 Twitter hashtag, participants completed an online survey. Survey participants reported completing a significantly greater mean total number of races during the challenge (17.5 ± 6.9 races) than the previous year (8.6 ± 7.4 races, p = .001) and 93% (n = 56) reported completing at least 13 races. Participants completed a mean of 1.4 ± 2.1 virtual races. Mean reported number of total miles ran/walked during the challenge was significantly greater (718.4 ± 465.0 miles) than the previous year (462.1 ± 436.5 miles, p = .002). Mean reported participant body weight post-challenge (68.2 ± 13.1 kg) was significantly lower than reported weight pre-challenge (69.7 ± 14.4 kg, p = .012). This study demonstrated that a social media PA challenge has the potential to present a scalable way to motivate individuals to participate in PA and decrease body weight.  相似文献   

16.
We examined the influence of stretching alone (SS) or combined with self-massage (SM) on maximal ankle dorsiflexion angle, maximal voluntary contraction (MVC) torque and calf muscle activity, and subcutaneous tissue thickness in 15 young (25 ± 3 years) and 15 middle-aged (45 ± 5 years) adults. Participants performed two sessions of calf muscle stretches (3x 30-s stretches, 30-s rest): stretch after a 60-s control condition (SS) and stretch after 60 s of self-massage with therapy balls (SM). Evaluations were performed before and 5 min after the intervention. Linear mixed effects model revealed no main effect for age on ROM or MVC and significant main effects for treatment and time. Change in ankle angle was greater after SM: SS = 3.1 ± 2°, SM = 6.2 ± 3.3° (Hedges’ g = 0.98, p < 0.001). Similar results were observed for MVC torque: SS = ?4 ± 16%, SM = 12 ± 16% (Hedges’ g = 0.97, p = 0.0001). Changes in MVC torque and absolute EMG amplitude were correlated, but subcutaneous tissue thickness was not altered by treatment. The gains in ROM were more pronounced in less flexible middle-aged adults, underscoring the need to include flexibility exercises in their training.  相似文献   

17.
Ballerinas use their ankle joints more extremely and sustain injuries on the ankle joint more frequently than non-dancers. Therefore, the ankle movement of dancers is important and should be studied to prevent injuries. Measuring ankle joint range of motion (ROM) using radiographs could demonstrate the contribution to motion of each joint. The aim of this study was to analyse and compare ankle joint movements and the ratio of each joint’s contribution during movement between dancers and non-dancers, using radiographic images. Dancers have lower dorsiflexion (26.7 ± 6.2°), higher plantarflexion (74.3 ± 7.1°) and higher total (101.1 ± 10.8°) ROMs than non-dancers (33.9 ± 7.0°, 57.2 ± 6.8° and 91.1 ± 9.3°, respectively) (p < 0.05). Although the ROMs were different between the two groups, the ratios of each joint movement were similar between these two groups, in all movements. Regarding total movement, the movement ratio of the talocrural joint was almost 70% and other joints accounted for almost 30% of the movement role in both dancers and non-dancers. Therefore, the differences in ROM between dancers and non-dancers were not a result of a specific joint movement but of all the relevant joints’ collaborative movement.  相似文献   

18.
Abstract

Lateral ankle sprains (LAS) are one of the most common musculoskeletal injuries and as a response, clinicians often use external ankle taping prophylactically to reduce the prevalence of injuries. External ankle taping techniques have been shown to significantly reduce passive ankle range of motion; however, there is limited research on the effects of external ankle taping on lower extremity kinematics or kinetics during sport specific tasks. Therefore, our objective was to compare the effects of external ankle taping on ankle, knee and hip kinematics and kinetics compared to no taping during an anticipated sidestep cutting task and a straight sprint task. We conducted a cross-over laboratory study with 16 healthy males. Three-dimensional kinematics and kinetics were collected with a motion capture system and in-ground force plate during 5 trials of a sprint and anticipated side-step cut with or without external ankle taping. Group means and associated 90% confidence intervals were plotted across 100 data points for each task, significance being identified when the confidence intervals did not overlap for three consecutive data points. No significant kinetic or kinematic differences were identified between conditions for the tasks. External ankle taping does not influence lower extremity biomechanics during a control cutting task.  相似文献   

19.
Rearfoot external eversion moments due to ground reaction forces (GRF) during running have been suggested to contribute to overuse running injuries. This study aimed to identify primary factors inducing these rearfoot external eversion moments. Fourteen healthy men ran barefoot across a force plate embedded in the middle of 30-m runway with 3.30 ± 0.17 m · s–1. Total rearfoot external eversion/inversion moments (Mtot) were broken down into the component Mxy due to medio-lateral GRF (Fxy) and the component Mz due to vertical GRF (Fz). Ankle joint centre height and medio-lateral distance from the centre of pressure to the ankle joint centre (a_cop) were calculated as the moment arm of these moments. Mxy dominated Mtot just after heel contact, with the magnitude strongly dependent on Fxy, which was most likely caused by the medio-lateral foot velocity before heel contact. Mz then became the main generator of Mtot throughout the first half of the stance phase, during which a_cop was the critical factor influencing the magnitude. Medio-lateral foot velocity before heel contact and medio-lateral distance from the centre of pressure to the ankle joint centre throughout the first half of the stance phase were identified as primary factors inducing the rearfoot external eversion moment.  相似文献   

20.
BackgroundAnkle complex proprioceptive ability, needed in active human movement, may change from childhood to elderly adulthood; however, its development across all life stages has remained unexamined. The aim of the present study was to investigate the across-the-lifespan trend for proprioceptive ability of the ankle complex during active ankle inversion movement.MethodsThe right ankles of 118 healthy right-handed participants in 6 groups were assessed: children (6–8 years old), adolescents (13–15 years old), young adults (18–25 years old), middle-aged adults (35–50 years old), old adults (60–74 years old), and very old adults (75–90 years old). While the participants were standing, their ankle complex proprioception was measured using the Active Movement Extent Discrimination Apparatus.ResultsThere was no significant interaction between the effects of age group and gender on ankle proprioceptive acuity (F (5, 106) = 0.593, p = 0.705, η2p = 0.027). Simple main effects analysis showed that there was a significant main effect for age group (F (5, 106) = 22.521, p < 0.001, η2p = 0.515) but no significant main effect for gender (F (1,106) = 2.283, p = 0.134, η2p = 0.021) between the female (0.723 ± 0.092, mean ± SD) and the male (0.712 ± 0.083) participants. The age-group factor was associated with a significant linear downward trend in scores (F (1, 106) = 10.584, p = 0.002, η2p = 0.091) and a strong quadratic trend component (F (1,106) = 100.701, p < 0.001, η2p = 0.480), producing an asymmetric inverted-U function.ConclusionThe test method of the Active Movement Extent Discrimination Apparatus is sensitive to age differences in ankle complex proprioception. For proprioception of the ankle complex, young adults had significantly better scores than children, adolescents, old adults, and very old adults. The middle-aged group had levels of ankle proprioceptive acuity similar to those of the young adults. The scores for males and females were not significantly different. Examination of the range of the scores in each age group highlights the possible level that ankle complex movement proprioceptive rehabilitation can reach, especially for those 75–90 years of age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号