首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wrist injuries are frequently observed after falls in snowboarding. In this study, laboratory experiments mimicking forward and backward falls were analysed. In six different falling scenarios, participants self-initiated falls from a static initial position. Eighteen volunteers conducted a total of 741 trials. Measurements were taken for basic parameters describing the kinematics as well as the biomechanical loading during impact, such as impact force, impact acceleration, and velocity. The effective mass affecting the wrist in a fall also was determined. The elbow angle at impact showed a more extended arm in backward falls compared to forward falls, whereas the wrist angle at impact remained similar in forward and backward falls. The study results suggest a new performance standard for wrist guards, indicating the following parameters to characterize an impact: an effective mass acting on one wrist of 3-5 kg, an impact angle of 75 degrees of the forearm relative to the ground, and an impact velocity of 3 m/s.  相似文献   

2.
Laceration injuries account for up to 23% of injuries in rugby union. They are frequently caused by studded footwear as a result of a player stamping onto another player during the ruck. Little is known about the kinetics and kinematics of rugby stamping impacts; current test methods assessing laceration injury risk of stud designs therefore lack informed test parameters. In this study, twelve participants stamped on an anthropomorphic test device in a one-on-one simulated ruck setting. Velocity and inclination angle of the foot prior to impact was determined from high-speed video footage. Total stamping force and individual stud force were measured using pressure sensors. Mean foot inbound velocity was 4.3 m ? s?1 (range 2.1–6.3 m ? s?1). Mean peak total force was 1246 N and mean peak stud force was 214 N. The total mean effective mass during stamping was 6.6 kg (range: 1.6–13.5 kg) and stud effective mass was 1.2 kg (range: 0.5–2.9 kg). These results provide representative test parameters for mechanical test devices designed to assess laceration injury risk of studded footwear for rugby union.  相似文献   

3.
It is unknown whether skilled golfers will modify their kinematics when using drivers of different shaft properties. This study aimed to firstly determine if golf swing kinematics and swing parameters and related launch conditions differed when using modified drivers, then secondly, determine which kinematics were associated with clubhead speed. Twenty high level amateur male golfers (M ± SD: handicap = 1.9 ± 1.9 score) had their three-dimensional (3D) trunk and wrist kinematics collected for two driver trials. Swing parameters and related launch conditions were collected using a launch monitor. A one-way repeated measures ANOVA revealed significant (p ≤ 0.003) between driver differences; specifically, faster trunk axial rotation velocity and an early wrist release for the low kick point driver. Launch angle was shown to be 2° lower for the high kick point driver. Regression models for both drivers explained a significant amount of variance (60–67%) in clubhead speed. Wrist kinematics were most associated with clubhead speed, indicating the importance of the wrists in producing clubhead speed regardless of driver shaft properties.  相似文献   

4.
The purpose of this study was to investigate the possible arm swing effect on the biomechanical parameters of vertical counter movement jump due to differences of the compliance of the take-off surface. Fifteen elite male beach-volleyball players (26.2 ± 5.9 years; 1.87 ± 0.05 m; 83.4 ± 6.0 kg; mean ± standard deviation, respectively) performed counter movement jumps on sand and on a rigid surface with and without an arm swing. Results showed significant (p < .05) surface effects on the jump height, the ankle joint angle at the lowest height of the body center of mass and the ankle angular velocity. Also, significant arm swing effects were found on jump height, maximum power output, temporal parameters, range of motion and angular velocity of the hip. These findings could be attributed to the instability of the sand, which resulted in reduced peak power output due to the differences of body configuration at the lowest body position and lower limb joints’ range of motion. The combined effect of the backward arm swing and the recoil of the sand that resulted in decreased resistance at ankle plantar flexion should be controlled at the preparation of selected jumping tasks in beach-volleyball.  相似文献   

5.
This modelling study sought to describe the relationships between elbow joint kinematics and wrist joint linear velocity in cricket fast bowlers, and to assess the sensitivity of wrist velocity to systematic manipulations of empirical joint kinematic profiles. A 12-camera Vicon motion analysis system operating at 250 Hz recorded the bowling actions of 12 high performance fast bowlers. Empirical elbow joint kinematic data were entered into a cricket bowling specific “Forward Kinematic Model” and then subsequently underwent fixed angle, angular offset and angle amplification manipulations. A combination of 20° flexion and 20° abduction at the elbow was shown to maximise wrist velocity within the experimental limits. An increased elbow flexion offset manipulation elicited an increase in wrist velocity. Amplification of elbow joint flexion–extension angular displacement indicated that, contrary to previous research, elbow extension range of motion and angular velocity at the time of ball release were negatively related to wrist velocity. Some relationships between manipulated joint angular waveforms and wrist velocity were non-linear, supporting the use of a model that accounts for the non-linear relationships between execution and outcome variables in assessing the relationships between elbow joint kinematics and wrist joint velocity in cricket fast bowlers.  相似文献   

6.
Abstract

Magnitudes and timings of kinematic variables have often been used to investigate technique. Where large inter-participant differences exist, as in basketball, analysis of intra-participant variability may provide an alternative indicator of good technique. The aim of the present study was to investigate the joint kinematics and coordination-variability between missed and successful (swishes) free throw attempts. Collegiate level basketball players performed 20 free throws, during which ball release parameters and player kinematics were recorded. For each participant, three misses and three swishes were randomly selected and analysed. Margins of error were calculated based on the optimal-minimum-speed principle. Differences in outcome were distinguished by ball release speeds statistically lower than the optimal speed (misses ?0.12 ± 0.10m · s?1; swishes ?0.02 ± 0.07m · s?1; P < 0.05). No differences in wrist linear velocity were detected, but as the elbow influences the wrist through velocity-dependent-torques, elbow–wrist angle–angle coordination-variability was quantified using vector-coding and found to increase in misses during the last 0.016s before ball release (P < 0.05). As the margin of error on release parameters is small, the coordination-variability is small, but the increased coordination-variability just before ball release for misses is proposed to arise from players perceiving the technique to be inappropriate and trying to correct the shot. The synergy or coupling relationship between the elbow and wrist angles to generate the appropriate ball speed is proposed as the mechanism determining success of free-throw shots in experienced players.  相似文献   

7.
The aim of this study was to examine spatiotemporal characteristics and joint angles during forward and backward walking in water at low and high stride frequency. Eight healthy adults (22.1 ± 1.1 years) walked forward and backward underwater at low (50 pulses) and high frequency (80 pulses) at the xiphoid process level with arms crossed at the chest. The main differences observed were that the participants presented a greater speed (0.58 vs. 0.85 m/s) and more asymmetry of the step length (1.24 vs. 1.48) at high frequency whilst the stride and step length (0.84 vs. 0.7 m and 0.43 vs. 0.35 m, respectively) were lower compared to low frequency (P < 0.05). Support phase duration was higher at forward walking than backward walking (61.2 vs. 59.0%). At initial contact, we showed that during forward walking, the ankle and hip presented more flexion than during backward walking (ankle: 84.0 vs. 91.8º and hip: 22.8 vs. 8.0º; P < 0.001). At final stance, the knee and hip were more flexed at low frequency than at high frequency (knee: 150.0 vs. 157.0º and hip: ?12.2 vs. –14.5º; P < 0.001). The knee angle showed more flexion at forward walking (134.0º) than backward walking (173.1º) (P < 0.001). In conclusion, these results show how forward and backward walking in water at different frequencies differ and contribute to a better understanding of this activity in training and rehabilitation.  相似文献   

8.
The purpose of this study was to investigate differences in the support leg joint moment and moment power between side-step (SS) and cross-step (CS) cutting techniques with a prescribed 90° cutting angle. Ground reaction forces (1,000 Hz) and three-dimensional kinematics (250 Hz) of SS and CS cutting techniques were collected from 20 male college athletes. Normalised peak knee extension moment was larger in the SS technique than in the CS technique (0.40 ± 0.10 in SS; 0.26 ± 0.08 in CS). In the SS technique, the knee extensors ( ? 0.10 ± 0.06 in SS; ? 0.02 ± 0.04 in CS) and ankle plantarflexors ( ? 0.12 ± 0.05 in SS; ? 0.07 ± 0.03 in CS) did significantly more negative work (normalised). The direction change angle (40.5 ± 8.7° in SS; 33.0 ± 6.8° in CS) and the decrease in horizontal velocity of the centre of mass ( ? 0.63 ± 0.23 m/s in SS; ? 0.31 ± 0.23 m/s in CS) were significantly larger in the SS technique. These results suggest that the SS technique is an effective means of changing running direction at the expense of velocity of the centre of mass and that the CS technique is better for minimising the reduction in horizontal velocity of the centre of mass.  相似文献   

9.
Despite many coaching and biomechanical texts describing how the kinematics of the club-head at impact lead to distance and accuracy of the ball flight, there is limited quantitative evidence supporting these assertions. The purpose of this study was to quantify the relationships between club-head kinematics and subsequent early ball flight characteristics during the golf drive. An opto-reflective system operating at 400 Hz was used to capture the swings of 21 male golfers using their own drivers. The 3D displacement data permitted the calculation of club-head kinematics at impact, as well as subsequent early ball flight characteristics. Using regression analyses, club-head kinematics at impact (velocity, orientation, path, and centeredness) were used to explain the variability in five dependent variables of early ball flight characteristics (resultant velocity, launch angle, side angle, back spin, and side spin). The results of the study indicated that club-head kinematics at impact explained a significant proportion of early ball flight characteristics (adjusted r 2 = 0.71–0.82), even when generalized across individual clubs.  相似文献   

10.
In this study, we examined the relationship between upper limb joint movements and horizontal racket head velocity to clarify joint movements for developing racket head speed during tennis serving. Sixty-six male tennis players were videotaped at 200 Hz using two high-speed video cameras while hitting high-speed serves. The contributions of each joint rotation to horizontal racket velocity were calculated using vector cross-products between the angular velocity vectors of each joint movement and relative position vectors from each joint to the racket head. Major contributors to horizontal racket head velocity at ball impact were shoulder internal rotation (41.1%) and wrist palmar flexion (31.7%). The contribution of internal rotation showed a significant positive correlation with horizontal racket head velocity at impact (r = 0.490, P < 0.001), while the contribution of palmar flexion showed a significant negative correlation (r = ? 0.431, P < 0.001). The joint movement producing the difference in horizontal racket head velocity between fast and slow servers was shoulder internal rotation, and angular velocity of shoulder internal rotation must be developed to produce a high racket speed.  相似文献   

11.
Although the power clean is an almost ubiquitous exercise in the strength and conditioning setting, relatively little is known about the biomechanics of successful and unsuccessful power clean lift attempts. The purpose of this study was to determine biomechanical differences between successful and unsuccessful power clean lift attempts in male collegiate athletes. Fifteen male lacrosse players (Age: 20.1 ± 1.2; Height: 1.78 ± 0.07 m; Body mass: 80.4 ± 8.1 kg; Relative one-repetition maximum power clean: 1.25 ± 0.13 kg/kg) were videotaped during a lifting session that required the completion of maximal effort power cleans to establish a one-repetition maximum. The position of the barbell was digitised and used to calculate the displacement, velocity, acceleration, and acceleration vector of the barbell. The results revealed that unsuccessful attempts were characterised by differences during the second pull phase. Unsuccessful lifts exhibited greater peak forward barbell displacement, lower backward barbell velocities, and lower resultant acceleration angles during the second pull. Strength and conditioning coaches should therefore emphasise limited forward motion of the barbell during the second pull and instruct athletes to generate a more backward-directed force during the second pull in order to lift greater loads during testing and subsequent lifting sessions.  相似文献   

12.
Recreational tennis players tend to have higher incidence of tennis elbow, and this has been hypothesised to be related to one-handed backhand technique and off-centre ball impacts on the racket face. This study aimed to investigate for a range of participants the effect of off-longitudinal axis and off-lateral axis ball–racket impact locations on racket and forearm joint angle changes immediately following impact in one-handed tennis backhand groundstrokes. Three-dimensional racket and wrist angular kinematic data were recorded for 14 university tennis players each performing 30 “flat” one-handed backhand groundstrokes. Off-longitudinal axis ball–racket impact locations explained over 70% of the variation in racket rotation about the longitudinal axis and wrist flexion/extension angles during the 30 ms immediately following impact. Off-lateral axis ball–racket impact locations had a less clear cut influence on racket and forearm rotations. Specifically off-longitudinal impacts below the longitudinal axis forced the wrist into flexion for all participants with there being between 11° and 32° of forced wrist flexion for an off-longitudinal axis impact that was 1 ball diameter away from the midline. This study has confirmed that off-longitudinal impacts below the longitudinal axis contribute to forced wrist flexion and eccentric stretch of the wrist extensors and there can be large differences in the amount of forced wrist flexion from individual to individual and between strokes with different impact locations.  相似文献   

13.
The purpose of this study was to determine whether joint velocities and segmental angular velocities are significantly correlated with ball velocity during an instep soccer kick. We developed a deterministic model that related ball velocity to kicking leg and pelvis motion from the initiation of downswing until impact. Three-dimensional videography was used to collect data from 16 experienced male soccer players (age = 24.8 ± 5.5 years; height = 1.80 ± 0.07 m; mass = 76.73 ± 8.31 kg) while kicking a stationary soccer ball into a goal 12 m away with their right foot with maximal effort. We found that impact velocities of the foot center of mass (CM), the impact velocity of the foot CM relative to the knee, peak velocity of the knee relative to the hip, and the peak angular thigh velocity were significantly correlated with ball velocity. These data suggest that linear and angular velocities at and prior to impact are critical to developing high ball velocity. Since events prior to impact are critical for kick success, coordination and summation of speeds throughout the kicking motion are important factors. Segmental coordination that occurs during a maximal effort kick is critical for completing a successful kick.  相似文献   

14.
The objective of this study was to identify biomechanical predictors for accuracy and speed of the wrist shot in floorball, comparing two different starting feet positions.

Ten floorball players performed 2 series of 10 stationary wrist shots, in 2 different positions (feet at a right angle to the end of the stick, oriented towards a target and feet parallel to the end of the stick and to the target). A 12-camera motion capture system, tracking reflective markers on key landmarks, was used to record participant and stick kinematics. Accuracy of the shot was quantified by distance of impact from target centre. Player gaze was approximated from head position.

Shot accuracy was significantly better (0.007) when feet were at right angle (0.22 [0.14] m) than when they were parallel (0.27 [0.20] m). Ball speed was no significantly different (P = 0.485) between the right angle position (23.50 [17.52] m · s?1) and the parallel position (23.50 [17.95] m · s?1). Between self-selected position and imposed position, there was no significant difference. Players looking at the target during shooting had greater accuracy. Regression models suggested that ball speed was mainly influenced, in both positions, by the flexion of the supporting leg (ankle, knee and hip), by the rotation of the hip and of the trunk, especially for the spine angles, and by the rotation and abduction–adduction movements of the wrist of the hand on the top of the stick. The comparison between players showed important differences in these technical skills.  相似文献   

15.
Many coaches often instruct swimmers to keep the elbow in a high position (high elbow position) during early phase of the underwater stroke motion (pull phase) in front crawl, however, the high elbow position has never been quantitatively evaluated. The aims of this study were (1) to quantitatively evaluate the “high elbow” position, (2) to clarify the relationship between the high elbow position and required upper limb configuration and (3) to examine the efficacy of high elbow position on the resultant swimming velocity. Sixteen highly skilled and 6 novice male swimmers performed 25 m front crawl with maximal effort and their 3-dimensional arm stroke motion was captured at 60 Hz. An attempt was made to develop a new index to evaluate the high elbow position (Ihe: high elbow index) using 3-dimensional coordinates of the shoulder, elbow and wrist joints. Ihe of skilled swimmers moderately correlated with the average shoulder internal rotation angle (r = ?0.652, < 0.01) and swimming velocity (r = ?0.683, P < 0.01) during the pull phase. These results indicate that Ihe is a useful index for evaluating high elbow arm stroke technique during the pull phase in front crawl.  相似文献   

16.
The purpose of this study was to investigate the relationship between the cable force and linear hammer speed in the hammer throw and to identify how the magnitude and direction of the cable force affects the fluctuations in linear hammer speed. Five male (height: 1.88 ± 0.06 m; body mass: 106.23 ± 4.83 kg) and five female (height: 1.69 ± 0.05 m; body mass: 101.60 ± 20.92 kg) throwers participated and were required to perform 10 throws each. The hammer's linear velocity and the cable force and its tangential component were calculated via hammer head positional data. As expected, a strong correlation was observed between decreases in the linear hammer speed and decreases in the cable force (normalised for hammer weight). A strong correlation was also found to exist between the angle by which the cable force lags the radius of rotation at its maximum (when tangential force is at its most negative) and the size of the decreases in hammer speed. These findings indicate that the most effective way to minimise the effect of the negative tangential force is to reduce the size of the lag angle.  相似文献   

17.
Fly-fishing is a popular form of recreation. Recent evidence has associated overhand fly-casting movements with upper extremity pain. However, little research exists on the motions and coordination common to fly-casting. The aim of this study was to establish upper extremity kinematic trends of fly-casting while casting greater line lengths. It was hypothesized that kinematic casting parameters would increase and time between peak angular velocities would decrease with greater line length. Eighteen males participated in the study. Three-dimensional motion capture was conducted to calculate shoulder, elbow, and wrist kinematics during casting conditions of 6.1, 12.2, 18.3, and 24.4 m of line. Multiple analyses of variance were used to assess the condition effect of line length on the kinematic variables (P = 0.05). Overall, total range of movement increased with increasing length of line cast. Peak angular velocity exhibited a proximal-to-distal trend: peak shoulder internal rotation followed by elbow extension, then wrist ulnar deviation. Time between peak shoulder and elbow angular velocities increased significantly as line length increased. Our findings indicate that specific changes in total range of movement accommodate the demands of casting greater lengths of line. Also, joint velocity coordination patterns of fly-casting appear to follow a proximal-to-distal pattern. These findings represent an initial foundation for connections between kinematics and upper extremity pain reported by fly-fisherman.  相似文献   

18.
Three‐dimensional (3‐D) high‐speed cinematography was used to record the penalty throw in water polo by six elite male (M) and six elite female (F) players. The direct linear transformation technique (DLT) was used in the 3‐D space reconstruction from 2‐D images recorded via laterally placed phase‐locked cameras operating at 200 Hz. Five of the twelve subjects lifted the ball from underneath at the start of the throw whilst the remaining subjects opted for a rotation lift. As the ball was brought behind the head the females used very little hip and shoulder rotation compared to the male players so that four of the six female subjects were square on to the target at the rear point. At the completion of the backswing the wrist was flexed to a similar angle (M‐162°; F‐158°); the elbow angle showed significantly greater flexion for females (85°) than males (107°).

During the forward swing, from rear point to release, the wrist joint of the female players flexed from a rear point angle of 158° to 148° at release. The wrist movement for male subjects was different from the females in that it flexed from 162° to 147°, 0.10 s prior to release and then extended to 159° at palmar release before again flexing to 156° at release. The amount of elbow extension during the forward swing was 48° for both groups; however, the females actually released the ball with the forearm vertical (89°) compared to the male forearm angle of 78°. Maximum angular velocity of the wrist and elbow occurred at release for 9 of the 12 subjects. Both the wrist and elbow joints (F‐148°; M‐156° at wrist and F‐126°; M‐148° at elbow) demonstrated greater flexion at release in female subjects, compared with males. Maximum linear endpoint velocities for the forearm and hand segments occurred at ball release resulting in mean ball velocities of 19.1 m s ‐1 and 14.7 m s‐ 1 for male and female subjects respectively.  相似文献   

19.
Synchronised swimming involves a variety of sculling movements essential for body support and propulsion but its study is scarce. We aimed to biomechanically compare standard and contra-standard sculling techniques, and to observe the relationship between measures. Six synchronised swimmers performed two, 30 s maximal intensity, fully tethered standard and contra-standard sculling motions. Kinetic and kinematic data were obtained using a load-cell and underwater cameras, respectively. Force decreased along both techniques’ bouts, but no differences in-between techniques were noted for any kinetic variables. Standard sculling presented a higher cycle rate and a lower elbow mean angle than the contra-standard sculling (2.4 ± 0.3 vs. 2.0 ± 0.2 cycles/s and 134.1 ± 5.8 and 141.5 ± 4.7°, p < 0.05). In the standard sculling, by removing and maintaining the variation between participants (r w and r, respectively), the absolute mean force was directly related with cycle rate (r w  = 0.60) and wrist angular velocity during flexion (r = 0.82), while in the contra-standard condition the force was inversely associated with wrist mean angle (r = ?0.95) and directly with hand speed (r w  = 0.76), and elbow angular velocity (r w  ≈ 0.60). Therefore, technique learning and training require different attention by coaches and swimmers.  相似文献   

20.
This study sought to identify biomechanical factors that determine fast and skilful execution of the seoi-nage (shoulder throw) technique by comparing kinematics between elite and college judo athletes. Three-dimensional motion data were captured using a VICON-MX system with 18 cameras operating at 250 Hz as three male elite and seven male college judo athletes performed seoi-nage. No significant difference was found in motion phase time of the turning phase between the two groups, indicating that motion phase time is not necessarily a factor contributing quickness in seoi-nage. The maximum relative velocity of the whole body centre of mass along the anterior–posterior direction was significantly greater in the elite athletes (2.74 ± 0.33 m/s) than in the college athletes (1.62 ± 0.47 m/s) during the turning phase (p = 0.023). The overall angular velocity of the body part lines, particularly the arm line, tended to be greater in the elite athletes (p = 0.068). The results imply that the velocity of the thrower relative to the opponent in the forward drive and turning motion reflects high skill seoi-nage. Coaches should recognise the relative forward velocity as a factor that may contribute to a successful seoi-nage when teaching the judo throw technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号