首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
In this study, we examined the relationship between upper limb joint movements and horizontal racket head velocity to clarify joint movements for developing racket head speed during tennis serving. Sixty-six male tennis players were videotaped at 200 Hz using two high-speed video cameras while hitting high-speed serves. The contributions of each joint rotation to horizontal racket velocity were calculated using vector cross-products between the angular velocity vectors of each joint movement and relative position vectors from each joint to the racket head. Major contributors to horizontal racket head velocity at ball impact were shoulder internal rotation (41.1%) and wrist palmar flexion (31.7%). The contribution of internal rotation showed a significant positive correlation with horizontal racket head velocity at impact (r = 0.490, P < 0.001), while the contribution of palmar flexion showed a significant negative correlation (r = - 0.431, P < 0.001). The joint movement producing the difference in horizontal racket head velocity between fast and slow servers was shoulder internal rotation, and angular velocity of shoulder internal rotation must be developed to produce a high racket speed.  相似文献   

2.
Abstract

The differences between the racket-arm acceleration mechanisms during open and square stance forehand groundstrokes in tennis were examined by quantifying the mechanical work done on the racket arm. We studied 13 advanced tennis players as they performed these strokes at maximum effort and calculated the work using inverse dynamics. The racket head speed was similar between the open and square stances. In the open stance, the lack of weight shifting towards the hitting direction resulted in a lower velocity for the shoulder joint centre in the hitting direction than in the square stance, and less work was done by the shoulder joint force in the hitting direction in the open stance than in the square stance (0.30?±?0.11?J·kg-1 vs. 0.38?±?0.16?J·kg-1; p?=?0.005). However, in the open stance, the torso rotated more towards the hitting direction and had more upward acceleration, which resulted in more work done by the sideways and upward shoulder joint forces than in the square stance (sideways: 0.07?±?0.09?J·kg-1 vs. 0.05?±?0.09?J·kg-1, p?=?0.046; upward: 0.08?±?0.09?J·kg-1 vs. 0.04?±?0.07?J·kg-1, p?=?0.002). Thus, the greater work done by the sideways and upward shoulder joint forces compensated for the lesser work done by the shoulder joint force in the hitting direction in the open stance. In both stances, mainly the horizontal flexion torque and internal rotation torque at the shoulder increased the energy of the racket arm.  相似文献   

3.
ABSTRACT

Knowledge of the kinematic differences that separate highly skilled and less-skilled squash players could assist the progression of talent development. This study compared trunk, upper-limb and racket kinematics between two groups of nine highly skilled and less-skilled male athletes for forehand drive, volley and drop strokes. A 15-camera motion analysis system recorded three-dimensional trajectories, with five shots analysed per participant per stroke. The highly skilled group had significantly (p < 0.05) larger forearm pronation/supination range-of-motion and wrist extension angles at impact than the less-skilled. The less-skilled group had a significantly more “open” racket face and slower racket velocities at impact than the highly skilled. Rates of shoulder internal rotation, forearm pronation, elbow extension and wrist flexion at impact were greater in the drive stroke than in the other strokes. The position of the racket at impact in the volley was significantly more anterior to the shoulder than in the other strokes, with a smaller trunk rotation angular velocity. Players used less shoulder internal/external rotation, forearm pronation/supination, elbow and wrist flexion/extension ranges-of-motions and angular velocities at impact in the drop stroke than in the other strokes. These findings provide useful insights into the technical differences that separate highly skilled from less-skilled players and provide a kinematic distinction between stroke types.  相似文献   

4.
ABSTRACT

Table tennis requires rapid and extreme movements that may result in shoulder adaptations, such as glenohumeral internal rotation deficit, which is a risk factor for several injuries. This study compared range of motion of internal and external rotation and total rotation motion of glenohumeral joint between dominant and non-dominant shoulders of table tennis players. This is a cross-sectional observational study. Twenty healthy male table tennis players that were enrolled in an official table tennis league took part in this study (mean age: 22.9 ± 12.9 years, time of sports practice: 6.2 ± 7.12 years). Measurements of passive glenohumeral external rotation and internal rotation were taken with the individuals in the supine and sidelying positions. Total rotation motion was calculated by summing external and internal rotations. The dominant side showed decreased internal rotation when compared to non-dominant side in both supine (mean difference: 14.9°, p = 0.02) and sidelying positions (mean difference: 16.3°, p = 0.01). No significant difference (> 0.05) was found for external rotation and total rotation motion between dominant and non-dominant shoulders. The findings indicate that table tennis players exhibit glenohumeral internal rotation deficit of dominant shoulder.  相似文献   

5.
Recreational tennis players tend to have higher incidence of tennis elbow, and this has been hypothesised to be related to one-handed backhand technique and off-centre ball impacts on the racket face. This study aimed to investigate for a range of participants the effect of off-longitudinal axis and off-lateral axis ball–racket impact locations on racket and forearm joint angle changes immediately following impact in one-handed tennis backhand groundstrokes. Three-dimensional racket and wrist angular kinematic data were recorded for 14 university tennis players each performing 30 “flat” one-handed backhand groundstrokes. Off-longitudinal axis ball–racket impact locations explained over 70% of the variation in racket rotation about the longitudinal axis and wrist flexion/extension angles during the 30 ms immediately following impact. Off-lateral axis ball–racket impact locations had a less clear cut influence on racket and forearm rotations. Specifically off-longitudinal impacts below the longitudinal axis forced the wrist into flexion for all participants with there being between 11° and 32° of forced wrist flexion for an off-longitudinal axis impact that was 1 ball diameter away from the midline. This study has confirmed that off-longitudinal impacts below the longitudinal axis contribute to forced wrist flexion and eccentric stretch of the wrist extensors and there can be large differences in the amount of forced wrist flexion from individual to individual and between strokes with different impact locations.  相似文献   

6.
The purpose of this study was to determine the kinematic patterns that maximized the vertical force produced during the water polo eggbeater kick. Twelve water polo players were tested executing the eggbeater kick with the trunk aligned vertically and with the upper limbs above water while trying to maintain as high a position as possible out of the water for nine eggbeater kick cycles. Lower limb joint angular kinematics, pitch angles and speed of the feet were calculated. The vertical force produced during the eggbeater kick cycle was calculated using inverse dynamics for the independent lower body segments and combined upper body segments, and a participant-specific second-degree regression equation for the weight and buoyancy contributions. Vertical force normalized to body weight was associated with hip flexion (average, r = 0.691; maximum, r = 0.791; range of motion, r = 0.710), hip abduction (maximum, r = 0.654), knee flexion (average, r = 0.716; minimum, r = 0.653) and knee flexion-extension angular velocity (r = 0.758). Effective orientation of the hips resulted in fast horizontal motion of the feet with positive pitch angles. Vertical motion of the feet was negatively associated with vertical force. A multiple regression model comprising the non-collinear variables of maximum hip abduction, hip flexion range of motion and knee flexion angular velocity accounted for 81% of the variance in normalized vertical force. For high performance in the water polo, eggbeater kick players should execute fast horizontal motion with the feet by having large abduction and flexion of the hips, and fast extension and flexion of the knees.  相似文献   

7.
Fly-fishing is a popular form of recreation. Recent evidence has associated overhand fly-casting movements with upper extremity pain. However, little research exists on the motions and coordination common to fly-casting. The aim of this study was to establish upper extremity kinematic trends of fly-casting while casting greater line lengths. It was hypothesized that kinematic casting parameters would increase and time between peak angular velocities would decrease with greater line length. Eighteen males participated in the study. Three-dimensional motion capture was conducted to calculate shoulder, elbow, and wrist kinematics during casting conditions of 6.1, 12.2, 18.3, and 24.4 m of line. Multiple analyses of variance were used to assess the condition effect of line length on the kinematic variables (P = 0.05). Overall, total range of movement increased with increasing length of line cast. Peak angular velocity exhibited a proximal-to-distal trend: peak shoulder internal rotation followed by elbow extension, then wrist ulnar deviation. Time between peak shoulder and elbow angular velocities increased significantly as line length increased. Our findings indicate that specific changes in total range of movement accommodate the demands of casting greater lengths of line. Also, joint velocity coordination patterns of fly-casting appear to follow a proximal-to-distal pattern. These findings represent an initial foundation for connections between kinematics and upper extremity pain reported by fly-fisherman.  相似文献   

8.
Tennis coaches often use the fundamental throwing skill as a training tool to develop the service action. However, recent skill acquisition literature questions the efficacy of non-specific training drills for developing complex sporting movements. Thus, this study examined the mechanical analogy of the throw and the tennis serve at three different levels of development. A 500 Hz, 22-camera VICON MX motion capture system recorded 28 elite female tennis players (prepubescent (n = 10), pubescent (n = 10), adult (n = 8)) as they performed flat serves and overhand throws. Two-way ANOVAs with repeated measures and partial correlations (controlling for group) assessed the strength and nature of the mechanical associations between the tasks. Preparatory mechanics were similar between the two tasks, while during propulsion, peak trunk twist and elbow extension velocities were significantly higher in the throw, yet the peak shoulder internal rotation and wrist flexion angular velocities were significantly greater in the serve. Furthermore, all of these peak angular velocities occurred significantly earlier in the serve. Ultimately, although the throw may help to prime transverse trunk kinematics in the serve, mechanics in the two skills appear less similar than many coaches seem to believe. Practitioners should, therefore, be aware that the throw appears less useful for priming the specific arm kinematics and temporal phasing that typifies the tennis serve.  相似文献   

9.
In Paralympic seated throwing events, the athlete can throw with and without an assistive pole. This study aimed to identify and compare performance-related kinematic variables associated with both seated throwing techniques. Twenty-nine non-disabled males (21.9 ± 2.6 years) performed 12 maximal throws using a 1-kg ball in two conditions (no-pole and pole). Automatic 3D-kinematic tracking (150 Hz) and temporal data were acquired. There was no significant difference between ball speeds at the point of release between conditions (no-pole = 12.8 ± 1.6 m/s vs. pole = 12.9 ± 1.5 m/s). There were four kinematic variables that were strongly correlated with ball speed when throwing with or without an assistive pole. These variables were elbow flexion at the start phase (pole r = .39 and no-pole r = .41), maximum shoulder external rotation angular velocity during the arm cocking phase (pole r = .42), maximum shoulder internal rotation angular velocity during the arm acceleration phase (pole r = .47), and should internal rotation angular velocity at the instant of ball release (pole r = .40). The pole clearly influenced the throwing technique with all four strongly correlated variables identified in this condition, compared to only one during the no-pole condition. When using the pole, participants produced significantly higher shoulder internal rotation angular velocities during the arm acceleration phase (pole = 367 ± 183°/s vs. no-pole = 275 ± 178°/s, p < .05) and at the instant of ball release (pole = 355 ± 115°/s vs. no-pole = 264 ± 120°/s, p < .05), compared to throwing without the pole. These findings have implications for the development of evidence-based classification systems in Paralympic seated throwing, and facilitate research that investigates the impact of impairment on seated throwing performance.  相似文献   

10.
Abstract

The purpose of this study was to investigate whether performance level and ball spin affect arm and racket kinematics of the table tennis topspin forehand. Nine advanced and eight intermediate male table tennis players hit topspin forehands against light and heavy backspins. Five high-speed video cameras were used to record their strokes at 200 fps. Contributions of joint rotations to the racket speed, the racket kinematics at ball impact, the time required for racket acceleration and the maximum slope of the racket speed-time curve (s max) were determined. The advanced players showed a significantly larger contribution of lower trunk axial rotation to the racket speed at impact and a significantly larger value of smax, and tended to require a less time for racket acceleration than the intermediate players. The racket speed at impact was not significantly different between the two player groups. The players adjusted the racket face angle rather than the inclination of the racket path at impact to the different ball spins. The results suggest that the ability to accelerate the racket in less time in the topspin forehand against backspin balls may be an important factor that affects the performance level.  相似文献   

11.
The purpose of this study was to determine the significance of mechanical energy generation and transfer in the upper limb in generating the racket speed during table tennis topspin forehands. Nine advanced and eight intermediate table tennis players performed the forehand stroke at maximum effort against light and heavy backspin balls. Five high-speed video cameras operating at 200 fps were used to record the motions of the upper body of the players. The joint forces and torques of the racket arm were determined with inverse dynamics, and the amount of mechanical energy generated and transferred in the arm was determined. The shoulder internal rotation torque exerted by advanced players was significantly larger than that exerted by the intermediate players. Owing to a larger shoulder internal rotation torque, the advanced players transferred mechanical energy from the trunk of the body to the upper arm at a higher rate than the intermediate players could. Regression of the racket speed at ball impact on the energy transfer to the upper arm suggests that increase in the energy transfer may be an important factor for enabling intermediate players to generate a higher racket speed at impact in topspin forehands.  相似文献   

12.
There has been significant technological advancement in the game of tennis over the past two decades. In particular, tennis rackets have changed in size, shape and material composition. The effects of these changes on ball rebound speed have been well documented, but few studies have considered the effects on ball angular velocity. The purpose of this study was to investigate the effects of three factors on post-impact ball spin. Tennis balls were projected at three velocities toward a clamped racket simulating three levels of stiffness and strung at three string tensions. The angular velocity of each tennis ball was measured from stroboscopic images during an oblique impact with the racket. A three-way factorial ANOVA revealed significant (P < 0.01) differences in the post-impact angular velocity for string tension, racket stiffness and impact velocity, as well as two-way interactions between string tension and impact velocity, and between racket stiffness and impact velocity. The possibility of tangential elastic strain energy being stored in the racket and ball was evident in low impact velocity trials. These displayed a post-impact angular velocity where the circumference of the ball was translating faster than the relative velocity between the ball’s centre of mass and the string surface. It was concluded that increasing the relative impact velocity between the racket and ball was the best means of increasing the post-impact angular velocity of the tennis ball.  相似文献   

13.
The purpose of this study was to measure the contributions of the motions of body segments and joints to racquet head speed during the tennis serve. Nine experienced male players were studied using three-dimensional film analysis. Upper arm twist orientations were calculated with two alternative methods using joint centres and skin-attached markers. The results showed that skin-attached markers could not be used to calculate accurate upper arm twist orientations due to skin movement, and that the use of joint centres produced errors of more than 20 degrees in the upper arm twist orientation when the computed elbow flexion/extension angle exceeded 135 degrees in the final 0.03 s before impact. When there were large errors in the upper arm twist orientation, it was impossible to obtain accurate data for shoulder or elbow joint rotations about any axis. Considering only the contributors that could be measured within our standards of acceptable error, the approximate sequential order of main contributors to racquet speed between maximum knee flexion and impact was: shoulder external rotation, wrist extension, twist rotation of the lower trunk, twist rotation of the upper trunk relative to the lower trunk, shoulder abduction, elbow extension, ulnar deviation rotation, a second twist rotation of the upper trunk relative to the lower trunk, and wrist flexion. The elbow extension and wrist flexion contributions were especially large. Forearm pronation made a brief negative contribution. Computed contributions of shoulder internal rotation, elbow extension and forearm pronation within the final 0.03 s before impact were questionable due to the large degree of elbow extension. Near impact, the combined contribution of shoulder flexion/extension and abduction/adduction rotations to racquet speed was negligible.  相似文献   

14.
The purpose of this study was to quantify ranges and speeds of movement, from shoulder external rotation to ball impact, in the tennis service actions of world class players. Two electronically synchronised 200 Hz video cameras were used to record 20 tennis players during singles competition at the Sydney 2000 Olympic games. Three-dimensional motion of 20 landmarks on each player and racquet were manually digitized. Based upon the mean values for this group, the elbow flexed to 104 degrees and the upper arm rotated into 172 degrees of shoulder external rotation as the front knee extended. From this cocked position, there was a rapid sequence of segment rotations. The order of maximum angular velocities was trunk tilt (280 degrees/s), upper torso rotation (870 degrees/s), pelvis rotation (440 degrees/s), elbow extension (1510 degrees/s), wrist flexion (1950 degrees/s), and shoulder internal rotation. Shoulder internal rotation was greater for males (2420 degrees/s) than females (1370 degrees/s), which may be related to the faster ball velocity produced by the males (50.8 m/s) than the females (41.5 m/s). Although both genders produced segment rotations in the same order, maximum upper torso velocity occurred earlier for females (0.075 s before impact) than for males (0.058 s). At impact, the trunk was tilted 48 degrees above horizontal, the arm was abducted 101 degrees and the elbow, wrist, and lead knee were slightly flexed. Male and female players should be trained to develop the kinematics measured in this study in order to produce effective high-velocity serves.  相似文献   

15.
Undulatory underwater swimming (UUS) is one of the major skills contributing to performance in competitive swimming. UUS has two phases– the upbeat is performed by hip extension and knee flexion, and the downbeat is the converse action. The purpose of this study was to determine which kinematic variables of the upbeat and downbeat are associated with prone UUS performance in an elite sample. Ten elite participants were filmed performing three prone 20 m UUS trials. Seven landmarks were manually digitised to calculate eighteen kinematic variables, plus the performance variable– horizontal centre of mass velocity (VCOM). Mean VCOM was significantly correlated with body wave velocity (upbeat r = 0.81, downbeat r = 0.72), vertical toe velocity (upbeat r = 0.71, downbeat r = 0.86), phase duration (upbeat r = ?0.79), peak hip angular velocity (upbeat r = 0.73) and mean knee angular velocity (upbeat r = ?0.63), all significant at P < 0.05. A multiple stepwise regression model explained 78% of variance in mean VCOM. Peak toe velocity explained 72% of the variance, and mean body wave velocity explained an additional 6%. Elite swimmers should strive for a high peak toe velocity and a fast caudal transfer of momentum to optimise underwater undulatory swimming performance.  相似文献   

16.
The purpose of this study was to investigate joint kinetics of the throwing arms and role of trunk motion in skilled elementary school boys during an overarm distance throw. Throwing motions of 42 boys from second, fourth, and sixth grade were videotaped with three high-speed cameras operating at 300 fps. Seven skilled boys from each grade were selected on the basis of throwing distance for three-dimensional kinetic analysis. Joint forces, torques, and torque powers of the throwing arm joints were calculated from reconstructed three-dimensional coordinate data smoothed at cut-off frequencies of 10.5–15 Hz and by the inverse dynamics method. Throwing distance and ball velocity significantly increased with school grade. The angular velocity of elbow extension before ball release increased with school grade, although no significant increase between the grades was observed in peak extension torque of elbow joint. The joint torque power of shoulder internal/external rotation tended to increase with school grade. When teaching the overarm throw, elementary school teachers should observe large backward twisting of trunk during the striding phase and should keep in mind that young children, such as second graders (age 8 years), will be unable to effectively utilise shoulder external/internal rotation during the throwing phase.  相似文献   

17.
We aimed to assess the relationship between throwing distance and kinematic release parameters of the flying disc in unskilled throwers, and to assess the relationship between kinetic variables acting on flying discs and the change in spin velocity during long forehand throws by skilled and unskilled throwers. Ten skilled and eleven unskilled throwers performed throws at maximum effort. Reflective marker positions on the disc and body were recorded with a 3D motion capture system during the throws to derive kinematic variables of a disc and kinetic variables acting on the disc. The analysis interval was from maximum external shoulder rotation to disc release. Significant correlations were observed between the throwing distance and spin velocity in skilled (r = 0.722, < 0.05) and unskilled throwers (r = 0.794, < 0.01), between the change in spin velocity and the angular impulse of moments of force, in unskilled throwers (r = 0.703, < 0.05), and between the change in spin velocity and the angular impulse of torque among skilled throwers (r = 0.680, < 0.01). Therefore, a strategy for increasing spin velocity in unskilled throwers could be used to generate a larger torque, similar to that observed in skilled throwers.  相似文献   

18.
Few studies have investigated the incidence of injuries in kayakers. The aim was to study the prevalence of shoulder pain in competitive flatwater kayakers and to evaluate any differences in range of motion or scapula stability of the shoulder joint among kayakers with or without the history of shoulder pain. Thirty-one kayakers were participated in the study, and a questionnaire including background data was used. Shoulder range of motion was measured with a goniometer, and the participants were observed for scapula dyskinesis in flexion and abduction. Of the participating kayakers, 54.8% (n = 17) had experienced shoulder pain. Kayakers who had experienced shoulder pain showed a significantly lower degree of internal rotational range of motion versus kayakers with no reported shoulder pain, with a mean degree of internal rotation in the right shoulder 49.3 vs 60.0 (P = 0.017) and the left shoulder 51.9 vs 66.0 (P = 0.000). Kayakers who had experienced shoulder pain were also observed with a scapular dyskinesis (n = 15 of 17 kayakers) to a significantly higher degree (P = 0.001) than kayakers with no reported shoulder pain. Findings suggest that screening for scapular dyskinesis and testing for rotational range of motion in the shoulder joint is essential in order to treat and maybe prevent shoulder pain in kayakers.  相似文献   

19.
Abstract

The aim of the present study was to investigate the patterns of shoulder muscle activation and joint torques during maximal effort eccentric contractions with shoulder extension, abduction, and diagonal movements on the isokinetic device. Participants in this investigation were nine men and four women with no history of shoulder injury or disorders. They all participated in overhead sports at least three days a week, and volunteered to participate in this study for shoulder isokinetic muscle strength testing. They performed eccentric muscle action with shoulder flexion, abduction, and diagonal movements at velocities of 60 rad·s?1 and 180 rad· s?1, which was followed alternately by passive shoulder flexion, abduction and diagonal movement at a velocity of 30 rad· s?1, and total range of motion was standardised to 90°. Electromyography (EMG) and torque values were calculated to every 10°, except for the start and end 5° during each task. During each test, the isokinetic force output and muscle activation were synchronised. EMG data were normalised by percentage of maximum voluntary isometric contraction (%MVIC). EMG signals were recorded by surface EMG from the anterior deltoid (AD), middle deltoid (MD), posterior deltoid (PD), upper trapezius (UT), middle trapezius (MT), and biceps brachii (BB) muscles during this test. All of the muscle patterns were significantly decreased at the last compared with the initial part during eccentric shoulder flexion movement, except for the BB muscle (P < 0.05). AD and BB muscles played a similar role when peak torque was generated under load during eccentric muscle action with varying shoulder movements. PD and UT muscle activities were significantly lower than the other muscle activities during eccentric contraction with shoulder flexion and abduction movements, and the PD and UT muscles played a significant role in conjunction with MD and MT muscles in varying degrees during eccentric contraction with shoulder diagonal movements at 180 rad·s?1 (P < 0.05). Our study demonstrated that MT muscle activity was greatly influenced when torque values showed a peak moment under load during maximum effort, eccentric contraction with shoulder abduction and diagonal movements. However, the MD, PD, UT, and MT muscle activities had no great influence when peak torque was generated under load during eccentric muscle action with shoulder diagonal movement at high velocity. The present study suggested that varying eccentric muscle activity patterns may be needed to investigate proper training and functional contributions of upper extremity muscles to stabilisation of the shoulder joint when peak torque was generated under load.  相似文献   

20.
The aim of this study was to examine the respective aptitudes of three rotation sequences (YtXfYh′′, ZtXfYh′′, and XtZfYh′′) to effectively describe the orientation of the humerus relative to the thorax during a movement involving a large horizontal abduction/adduction component: the tennis forehand drive. An optoelectronic system was used to record the movements of eight elite male players, each performing ten forehand drives. The occurrences of gimbal lock, phase angle discontinuity and incoherency in the time course of the three angles defining humerothoracic rotation were examined for each rotation sequence. Our results demonstrated that no single sequence effectively describes humerothoracic motion without discontinuities throughout the forehand motion. The humerothoracic joint angles can nevertheless be described without singularities when considering the backswing/forward-swing and the follow-through phases separately. Our findings stress that the sequence choice may have implications for the report and interpretation of 3D joint kinematics during large shoulder range of motion. Consequently, the use of Euler/Cardan angles to represent 3D orientation of the humerothoracic joint in sport tasks requires the evaluation of the rotation sequence regarding singularity occurrence before analysing the kinematic data, especially when the task involves a large shoulder range of motion in the horizontal plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号