首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
本文将柯西不等式:设ai、bi∈R(i=1,2,…,n),则(n∑i=1aibi)2≤(n∑i=1a2i)(n∑i=1b2i).  相似文献   

2.
设ai、bi∈R(i=1,2,…,n),则(n∑i=1a2i·n∑i=1b2i≥(n∑i=1aibi)2),等号当且仅当(a1/b1=a2/b2)=…=an/bn时成立,这就是著名的柯西不等式.若在此不等式中作如下代换:令ai=(√xi),bi=(√yi),即得如下定理:  相似文献   

3.
柯西不等式是指:对于ai,bi∈R(i=1,2,…,n),有(n∑i=1 aibi)2≤(n∑i=1 ai2)·(n∑i=1 bi2)i=1.这个不等式以对称的结构,广泛的应用,以及证法的多样性,引起了广泛的兴趣和讨论,下面给出几种新的证法.  相似文献   

4.
柯西不等式的再推广   总被引:1,自引:0,他引:1  
黄毅老师在文 [1]中给出了柯西不等式的一个变形及其推广 ,本文在此基础上作进一步的推广 .引理 1(赫尔德不等式 )已知 ai,bi ∈ R+ ,i = 1,2 ,… ,n且α +β =1,1)若αβ >0 ,则∑ni=1aαibβi ≤ ( ∑ni=1ai)α( ∑ni=1bi)β2 )若αβ <0 ,则∑ni=1aαibβi ≥ ( ∑ni=1ai) α( ∑ni=1bi) β引理 2 已知 xi,yi ∈ R+ ,i =1,2 ,… ,n1)若 r >1或 r <0 ,则∑ni=1xiyri ≥ ( ∑ni=1yi) r( ∑ni =1x 11 -ri ) 1 -r2 )若 0 相似文献   

5.
笔者的解题分析文章 ,大多是结合现实情景 ,从“怎样学会解题”(从而怎样学会数学 )的角度谈解题思路的探求、解题过程的改进、解题成果的扩大 ,注重心路的历程和数学的特征 .本文将通过柯西不等式经典证明的分析 ,提炼出一个数量关系证明的程序———演算两次 .1 案例分析———柯西不等式证明的理解1.1 柯西不等式证明的传统认识———判别式法例 1  (柯西不等式 )设a1、a2 、…、an,b1、b2 、…、bn 为两组实数 ,则有不等式∑ni =1 ai2 ∑ni=1 bi2 ≥∑ni=1 aibi 2 .①等号成立当且仅当已知两组数成比例a1b1=a2b2=… =anbn.②(此处约…  相似文献   

6.
受文[1]的启发,可得如下的结论: 命题若∑ni=1a2i=1,(1) ∑ni=1b2i=1,(2) ∑ni=1aibi=1,(3) 则ai=bi(I=1,2,…,n).(4) 证明 (1) (2)-(3)×2得 ∑ni=1(a2i-2aibi b2i)=0, 即∑ni=1(ai-bi)2=0,∴(4)成立.  相似文献   

7.
设a1,a2,a3,…,an;b1,b2,b3,…,bn是任意两组实数,则有((n∑i=1)aibi)2≤((n∑i=1)ai2)·((n∑i=1)bi2)当且仅当a1/b1=a2/b2=…=an/bn时,取"="号,这就是柯西不等式.  相似文献   

8.
在柯西不等式:(^n∑i=1 ai^2)·(^n∑i=1 bi^2)≥(^n∑i=1 aibi)^2 (其中ai,bi∈R,i=1,2,…,n)中,取ai^2=xi,bi^2=xiyi^2,即得下面的:[第一段]  相似文献   

9.
构造函数解决与不等式相关问题是很常见的,但通常都是构造单调函数,并利用其单调性来完成解答.本文介绍一种新的构造方法,它不是利用函数的单调性,而是应用函数值在其变量取值范围内有确定符号来解题.下面举例来加以说明.例1已知a1,a2,…,an,b1,b2,…,bn∈[1,2],且∑ni=1ai2=∑ni=1bi2.求证:∑ni=1ai3bi≤1107∑i=n1bi2.证明:构造函数f(x)=(x-12)(x-2)(x+25),则当21≤x≤2时,f(x)≤0故x3-2101x2+52≤0,即x3≤2101x2-52.又21≤abii≤2,所以abi33i≤1210ba2ii2-52,所以ab3ii≤2101ai3-25bi2.故∑ni=1ai3bi≤2110∑i=n1a2i-52∑i=n1bi2=2101∑i…  相似文献   

10.
定理 设ai,bi∈R+,i =1 ,2 ,… ,n .m ,n∈N ,∑bmi =∑ni=1bmi =1 ,p =mm +n,则∑ aibni≥ (∑api) 1p.①证明 :①等价于∑api/ (∑ aibni) p=∑ (ai∑ai/bni) p≤ 1 .②记Ai=ai/bni,则②的中间式等于∑ (Aibni∑Ai) p=∑ [Ami(bmi) n(∑Ai) m]1m +n≤∑ (mAi∑Ai+nbmi) / (m +n) =m +n∑bmim +n =1 .等式当且仅当 Ai∑Ai=bmi(i=1 ,2 ,… ,n) ,即 a1bm +n1=… =anbm +nn时成立 .局部对称权方和不等式@石长伟$陕西省西安市大华中学1 杨克昌.权方和不等式.数学通讯,1982,6…  相似文献   

11.
文[1]用均值不等式广泛地解决了一类分式不等式的证明 .本文来介绍这类不等式的一般性证法 ,证明中用到柯西不等式及其推论 .柯西不等式设 ai,bi ∈ R( i =1 ,2 ,… ,n) ,则 ( a21 + a22 +… + a2n) ( b21 + b22 +… + b2n)≥( a1 b1 + a2 b2 +… + anbn) 2推论 设 ai,bi ∈ R+( i =1 ,2 ,… ,n) ,则a21b1+ a22b2+… + a2nbn≥( a1 + a2 +… + an) 2b1 + b2 +… + bn下面结合文 [1 ]中的一例阐述推论的应用 .例 1 设 ∑ni=1xi =1 ,xi ∈ R+,i =1 ,2 ,… ,n,证明 :x11 -x1+ x21 -x2+… + xn1 -xn≥ nn -1左边 =x21x1 -x21+ x22x2 -x22+……  相似文献   

12.
读者都熟悉柯西不等式将其中的ai2换成bi,bi2换成ai/bi,则有即 等号当且仅当ai=λbi时成立. 这个结果通常被称为权方和不等式,它其实是柯西不等式的一个推论.权方和不等式对于含分式之和的不等式问题,是很有用的.  相似文献   

13.
设两个实数数列{an}、{bn}: (1) 若a1≤a2≤…≤an, b1≤b2≤…≤bn, 则(1)/(n)∑ni=1aibi≥((1)/(n)∑ni=1ai)((1)/(n)∑ni=1bi);  相似文献   

14.
柯西不等式:设a1,a2,…,an,b1,b2,…,bn∈R,则(a12+a22+…+a2n)(b12+b22+…+b2n)≥(a1b1+a2b2+…+anbn)2,当且仅当bi=0(i=1,2,…,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.柯西不等式具有对称和谐的结构特征,应用关键在于构造两组数ai,bi(i=1,2,…,n),进行合理的变形,找准解  相似文献   

15.
文[1]利用均值不等式给出一道最值问题的通解(法一),并将该问题作了进一步的推广;文[2]用向量法对该问题及其推广进行解答(法二).本文将应用空间几何知识和柯西不等式,给出该问题及其推广的另外两种解法(法三,法四). 文[1]的问题及其推广是: 问题 已知a,b,c,x, y,z 是实数,a2 b2 c2=1, x2 y2 z2 = 9 ,求ax by cz 的最大值. 问题推广 已知ai,bi(i =1,2,L,n)且∑an n n 2 = p, 2 i ∑b i = q ,求 aibi 的最大值. ∑ i=1 i=1 i=1 …  相似文献   

16.
柯西不等式为:(a1b1 a2b2 … anbn)2≤(a21 a22 … a2n)(b21 b22十… b2n).其中ai,bi∈R(i=1,2,…,n).当且仅当a1/b1=a2/b2=…=an/bn时取"=",(约定ai=0时,bi=0,i=1,2,…,n).对于许多不等式问题,若善于运用柯西不等式及其等价形式,则往往会使一些棘手的问题变得简单明了.关键是构造适合不等式的条件,并能根据问题探索其等价形式.  相似文献   

17.
利用Able定理,建立了∑n,i=1 aibi1({ai},{bi}分别为等差、等比数列)的求和公式.  相似文献   

18.
柯西不等式可以很好地考查学生的运算求解能力和逻辑思维能力,因而成为高中数学各类考试中的热门考点.n 维柯西不等式的一般形式:对任意的实数a1,a2,…,an 及b1,b2,…,bn ,有((nΣi=1aibi)2≤(nΣi=1a2i)(nΣi=1b2i)),其中当且仅当a1/b1=a2/b2=…=an/bn时(当bk ...  相似文献   

19.
1柯西不等式的基本形式及推广由文献知柯西不等式(cauchy)表述为:对任意a1,a2…,aa;b1,b2…ba∈R,有(a1b1 a2b2 … anbn)2(a21 a22 …a2n)(b21 b22 …b2n),当且仅当a1b1=a2b2=A=anbn时,等号成立(简记为∑ni=1aibj2n∑i=1a2i∑ni=1b2i).柯西不等式有着非常广泛的应用,下面先介绍  相似文献   

20.
本文拟通过对加强命题证明Σni=ni1/ai〈c(c为常数)型数列不等式的证明思路进行详细剖析,进一步揭示该类问题的内在本质.给出加强命题证明该类数列不等式的基本思路和方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号