首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 419 毫秒
1.
The aim of this study was to analyse the effect of pedalling rate on the pattern of mechanical torque application and on neuromuscular fatigue during prolonged cycling exercise. Eleven well-trained individuals performed three 1-h pedalling sessions, at 50 rev?·?min?1, 110 rev?·?min?1 and a freely chosen cadence, at an intensity corresponding to 65% of their maximal aerobic power. The mechanical torque applied on the right pedal was recorded for 30?s every 5?min while pedalling. Contractile and neural properties of the quadriceps and hamstring muscles were analysed before and immediately after each of the three pedalling sessions. The post-exercise reduction in knee extensors maximal voluntary contraction was significant (P <?0.01) irrespective of the cadence, but no difference was found between cadences. The use of a particular cadence did not lead to preferentially central or peripheral fatigue. An increase in cadence resulted in greater positive and negative work generated during pedalling. The mechanical pattern was not altered during the exercise, whatever the selected cadence. The present study demonstrates that despite the occurrence of neuromuscular fatigue, trained individuals maintained a stable pedalling pattern throughout an endurance cycling exercise for cadences ranging from 50 to 110 rev?·?min?1.  相似文献   

2.
ABSTRACT

The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140 revs · min?1 on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders’ mean values for peak power and time of power production in all 3 tests were recorded. The BMX riders produced peak power (1105 ± 139 W) at 100 revs · min?1 with lower peak power produced at 80 revs · min?1 (1060 ± 69 W, (F(2,15) = 3.162; P = .266; η2 = 0.960), 120 revs · min?1 (1077 ± 141 W, (F(2,15) = 4.348; P = .203; η2 = 0.970) and 140 revs · min?1 (1046 ± 175 W, (F(2,15) = 12.350; P = 0.077; η2 = 0.989). The shortest time to power production was attained at 120 revs · min?1 in 2.5 ± 1.07 s. Whilst a cadence of 80 revs · min?1 (3.5 ± 0.8 s, (F(2,15) = 2.667; P = .284; η2 = 0.800) 100 revs · min?1 (3.00 ± 1.13 s, (F(2,15) = 24.832; P = .039; η2 = 0.974) and 140 revs · min?1 (3.50 ± 0.88 s, (F(2,15) = 44.167; P = .006; η2 = 0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios.  相似文献   

3.
In this holistic review of cycling science, the objectives are: (1) to identify the various human and environmental factors that influence cycling power output and velocity; (2) to discuss, with the aid of a schematic model, the often complex interrelationships between these factors; and (3) to suggest future directions for research to help clarify how cycling performance can be optimized, given different race disciplines, environments and riders. Most successful cyclists, irrespective of the race discipline, have a high maximal aerobic power output measured from an incremental test, and an ability to work at relatively high power outputs for long periods. The relationship between these characteristics and inherent physiological factors such as muscle capilliarization and muscle fibre type is complicated by inter-individual differences in selecting cadence for different race conditions. More research is needed on high-class professional riders, since they probably represent the pinnacle of natural selection for, and physiological adaptation to, endurance exercise. Recent advances in mathematical modelling and bicycle-mounted strain gauges, which can measure power directly in races, are starting to help unravel the interrelationships between the various resistive forces on the bicycle (e.g. air and rolling resistance, gravity). Interventions on rider position to optimize aerodynamics should also consider the impact on power output of the rider. All-terrain bicycle (ATB) racing is a neglected discipline in terms of the characterization of power outputs in race conditions and the modelling of the effects of the different design of bicycle frame and components on the magnitude of resistive forces. A direct application of mathematical models of cycling velocity has been in identifying optimal pacing strategies for different race conditions. Such data should, nevertheless, be considered alongside physiological optimization of power output in a race. An even distribution of power output is both physiologically and biophysically optimal for longer ( > 4 km) time-trials held in conditions of unvarying wind and gradient. For shorter races (e.g. a 1 km time-trial), an 'all out' effort from the start is advised to 'save' time during the initial phase that contributes most to total race time and to optimize the contribution of kinetic energy to race velocity. From a biophysical standpoint, the optimum pacing strategy for road time-trials may involve increasing power in headwinds and uphill sections and decreasing power in tailwinds and when travelling downhill. More research, using models and direct power measurement, is needed to elucidate fully how much such a pacing strategy might save time in a real race and how much a variable power output can be tolerated by a rider. The cyclist's diet is a multifactorial issue in itself and many researchers have tried to examine aspects of cycling nutrition (e.g. timing, amount, composition) in isolation. Only recently have researchers attempted to analyse interrelationships between dietary factors (e.g. the link between pre-race and in-race dietary effects on performance). The thermal environment is a mediating factor in choice of diet, since there may be competing interests of replacing lost fluid and depleted glycogen during and after a race. Given the prevalence of stage racing in professional cycling, more research into the influence of nutrition on repeated bouts of exercise performance and training is required.  相似文献   

4.
This critical review reflects the current state of cadence research during cyclical activities at different intensities. Moreover, this review aims at making suggestions in the areas of evaluation, therapy and sporting performance in the light of all the different results reported in studies. A large number of researchers have tried to determine the ‘optimal’ cadence from imposed, preferred or spontaneously chosen cadences in order to improve efficiency and performances. Results are sometimes conflicting and difficult to explain or interpret. The authors have studied the variations in cadences using a reduced number of parameters, without links between energetic (oxygen consumption, ventilation), biomechanical (force, electromyography) and/or perceived parameters (rating of perceived exertion). Conclusions point out that the ‘optimal’ cadence cannot be unique and must be associated with the objectives and individual characteristics of the subject (skills and training level, anthropometric parameters). In the area of training and reconditioning, cadences would have to be set in relation to the nature of cyclical activities and the subjects’ condition.  相似文献   

5.
Prior studies have investigated heart rate dynamics from a variety of perspectives, but are often inadequate for predicting heart rate responses across a broad range of transient exercise intensities. The aim of this study was to develop a nonlinear model to describe the heart rate response of an individual during cycling and to investigate whether heart rate is more accurately predicted by a combination of power output and cadence than by power output alone. The proposed model can account for the transient fluctuations of an individual’s heart rate while they participate in exercise that varies in intensity. The participants for this study each performed a fifty minute bout of cycling on an electric-braked cycle ergometer in the laboratory. The testing protocol for the cycling bout was designed to challenge the predictive capabilities of the model and the participants therefore abruptly changed their power outputs and cadences throughout the tests, which resulted in significant transient fluctuations in their heart rate responses. Due to the nonlinear nature of the proposed heart rate model, a heuristic algorithm was developed to perform the parameter estimation. The model predictions for heart rate matched very well with the experimental heart rate responses for each of the participants, especially when considering the challenges inherent to predicting abrupt transient behavior in the heart rate response. Model comparisons also indicated that heart rate is more accurately predicted by a combination of power output and cadence than by power output alone.  相似文献   

6.
场地自行车运动员踏蹬动作肌电研究   总被引:1,自引:0,他引:1  
为从神经肌肉协调角度研究场地自行车运动员踏蹬动作技术特征,本文结合场地4km专项特点,研究10名场地自行车运动员在500w负荷下以100rpm、120rpm、130rpm、140rpm四种频率稳态骑行时下肢7块肌肉的EMG信号及四组单、双关节拮抗肌协调的变化规律。结果表明,更高踏蹬频率下RF活动显著提前至上提末段,TDC处平滑过渡另有机制。VL和GAS活动区域显著增大。TA突出表现为双峰模式,前峰在协调GAS传递能量和防止VM功能加强引起的膝关节过伸方面起重要作用。更高频率下RF与GM间拮抗机制表现为相反改变,BF/VL始终保持正相关,有助于下踏阶段膝-髋间的净能量传递。VL与GAS间显著负相关保证了近端环节至曲柄的高效传递,TA与GAS间显著负相关侧面证实TA双峰的重要意义。研究提示,专项频率(130-140rpm)下踏蹬动作有其特征的肌肉协调变化。  相似文献   

7.
The aim of this study was to analyse the effect of pedalling rate on the pattern of mechanical torque application and on neuromuscular fatigue during prolonged cycling exercise. Eleven well-trained individuals performed three 1-h pedalling sessions, at 50 rev.min-1, 110 rev.min-1 and a freely chosen cadence, at an intensity corresponding to 65% of their maximal aerobic power. The mechanical torque applied on the right pedal was recorded for 30 s every 5 min while pedalling. Contractile and neural properties of the quadriceps and hamstring muscles were analysed before and immediately after each of the three pedalling sessions. The post-exercise reduction in knee extensors maximal voluntary contraction was significant (P<0.01) irrespective of the cadence, but no difference was found between cadences. The use of a particular cadence did not lead to preferentially central or peripheral fatigue. An increase in cadence resulted in greater positive and negative work generated during pedalling. The mechanical pattern was not altered during the exercise, whatever the selected cadence. The present study demonstrates that despite the occurrence of neuromuscular fatigue, trained individuals maintained a stable pedalling pattern throughout an endurance cycling exercise for cadences ranging from 50 to 110 rev.min-1.  相似文献   

8.
The aim of this study was to ascertain if gear ratio selection would have an effect on peak power and time to peak power production in elite Bicycle Motocross (BMX) cyclists. Eight male elite BMX riders volunteered for the study. Each rider performed three, 10-s maximal sprints on an Olympic standard indoor BMX track. The riders’ bicycles were fitted with a portable SRM power meter. Each rider performed the three sprints using gear ratios of 41/16, 43/16 and 45/16 tooth. The results from the 41/16 and 45/16 gear ratios were compared to the current standard 43/16 gear ratio. Statistically, significant differences were found between the gear ratios for peak power (F(2,14)?=?6.448; p?=?.010) and peak torque (F(2,14)?=?4.777; p?=?.026), but no significant difference was found for time to peak power (F(2,14)?=?0.200; p?=?.821). When comparing gear ratios, the results showed a 45/16 gear ratio elicited the highest peak power,1658?±?221?W, compared to 1436?±?129?W and 1380?±?56?W, for the 43/16 and 41/16 ratios, respectively. The time to peak power showed a 41/16 tooth gear ratio attained peak power in ?0.01?s and a 45/16 in 0.22?s compared to the 43/16. The findings of this study suggest that gear ratio choice has a significant effect on peak power production, though time to peak power output is not significantly affected. Therefore, selecting a higher gear ratio results in riders attaining higher power outputs without reducing their start time.  相似文献   

9.
The intent of this study was two-fold. The first aim was to investigate how cyclists orient forces applied by the feet to the pedals in response to varying power output and cadence demands, and the second was to assess whether competitive riders responded differently from recreational riders to such variations. One group consisted of US Cycling Federation category II licensed competitive cyclists (n = 7) and the second group consisted of recreational cyclists with no competitive experience (n = 38). The subjects rode an instrumented stationary 10-speed geared bicycle mounted on a platform designed to provide rolling and inertial resistance for six pedal rate/power output conditions for a minimum of 2 min for each ride. The pedalling rates were 60, 80 and 100 rev min-1 and the power outputs 100 and 235 W. All rides were presented in random order. The forces applied to the pedals, the pedal angle with respect to the crank and the crank angle were recorded for the final 30 s of each ride. From these data, a number of variables were computed including peak normal and tangential forces, crank torque, angular impulse, proportion of resultant force perpendicular to the crank, and pedal angle. Both the competitive and recreational groups responded similarly to increases in cadence and power output. There was a decrease in the peak normal forces, whereas the tangential component remained almost constant as cadence was increased. Regardless of cadence, the riders responded to increased power output demands by increasing the amount of positive angular impulse. All the riders had a reduced index of effectiveness as cadence increased. This was found to be the result of the large effect of the forces during recovery on this calculation. There were no significant differences between the two groups in each of these variables over all conditions. It was concluded that the lack of difference between the groups was a combined consequence of the limited degrees of freedom associated with the bicycle and that the relatively low power output for the competitive riders was insufficient to discriminate or highlight superior riding technique.  相似文献   

10.
Abstract

In this holistic review of cycling science, the objectives are: (1) to identify the various human and environmental factors that influence cycling power output and velocity; (2) to discuss, with the aid of a schematic model, the often complex interrelationships between these factors; and (3) to suggest future directions for research to help clarify how cycling performance can be optimized, given different race disciplines, environments and riders. Most successful cyclists, irrespective of the race discipline, have a high maximal aerobic power output measured from an incremental test, and an ability to work at relatively high power outputs for long periods. The relationship between these characteristics and inherent physiological factors such as muscle capilliarization and muscle fibre type is complicated by inter-individual differences in selecting cadence for different race conditions. More research is needed on high-class professional riders, since they probably represent the pinnacle of natural selection for, and physiological adaptation to, endurance exercise. Recent advances in mathematical modelling and bicycle-mounted strain gauges, which can measure power directly in races, are starting to help unravel the interrelationships between the various resistive forces on the bicycle (e.g. air and rolling resistance, gravity). Interventions on rider position to optimize aerodynamics should also consider the impact on power output of the rider. All-terrain bicycle (ATB) racing is a neglected discipline in terms of the characterization of power outputs in race conditions and the modelling of the effects of the different design of bicycle frame and components on the magnitude of resistive forces. A direct application of mathematical models of cycling velocity has been in identifying optimal pacing strategies for different race conditions. Such data should, nevertheless, be considered alongside physiological optimization of power output in a race. An even distribution of power output is both physiologically and biophysically optimal for longer ( >4km) time-trials held in conditions of unvarying wind and gradient. For shorter races (e.g. a 1km time-trial), an‘all out’ effort from the start is advised to‘save’ time during the initial phase that contributes most to total race time and to optimize the contribution of kinetic energy to race velocity. From a biophysical standpoint, the optimum pacing strategy for road time-trials may involve increasing power in headwinds and uphill sections and decreasing power in tailwinds and when travelling downhill. More research, using models and direct power measurement, is needed to elucidate fully how much such a pacing strategy might save time in a real race and how much a variable power output can be tolerated by a rider. The cyclist's diet is a multifactorial issue in itself and many researchers have tried to examine aspects of cycling nutrition (e.g. timing, amount, composition) in isolation. Only recently have researchers attempted to analyse interrelationships between dietary factors (e.g. the link between pre-race and in-race dietary effects on performance). The thermal environment is a mediating factor in choice of diet, since there may be competing interests of replacing lost fluid and depleted glycogen during and after a race. Given the prevalence of stage racing in professional cycling, more research into the influence of nutrition on repeated bouts of exercise performance and training is required.  相似文献   

11.
Vertigo has been described after the practice of mountain bike. This study aimed to investigate the prevalence of vertigo following competitions or training sessions of downhill mountain biking (DMB) or road cycling (RC). One hundred and two DMB riders, 79 road cyclists and 73 control participants filled in a survey intended to evaluate the prevalence of vertigo in daily living activities and following competitions or training sessions. Vertigo causal factors (crashes, head trauma, fatigue, characteristics of the path/road ridden) were recorded. DMB riders and road cyclists did not report more vertigo during daily living activities than controls. But DMB riders older than 30 had more risk to report vertigo than age-matched road cyclists (OR: 5.06, 95% CI: 1.23–20.62). Road cyclists aged between 20 and 29 were 2.59-fold (95% CI: 1.06–6.27) more likely to report vertigo than controls. After competitions and training sessions, DMB riders were 2.33-fold (95% CI: 1.22–4.41) more likely to report vertigo than road cyclists. Vertigo causal factors were crash with head trauma in DMB riders and fatigue in road cyclists. Vertigo during daily living activities may be of concern for cyclists, particularly older DMB riders. The accumulation of impacts (crashes, vibrations) during the career of a DMB rider may generate micro-traumatisms of the central nervous system and/or peripheral vestibular structures, particularly the otolith organs. In RC, the pathophysiological mechanisms generating vertigo might be effort-related disturbance of homeostasis. To avoid injuries, DMB riders should be aware that vertigo may occur at the end of training sessions or competitions.  相似文献   

12.
Although the link between sagittal plane motion and exercise intensity has been highlighted, no study assessed if different workloads lead to changes in three-dimensional cycling kinematics. This study compared three-dimensional joint and segment kinematics between competitive and recreational road cyclists across different workloads. Twenty-four road male cyclists (12 competitive and 12 recreational) underwent an incremental workload test to determine aerobic peak power output. In a following session, cyclists performed four trials at sub-maximal workloads (65, 75, 85 and 95% of their aerobic peak power output) at 90?rpm of pedalling cadence. Mean hip adduction, thigh rotation, shank rotation, pelvis inclination (latero-lateral and anterior–posterior), spine inclination and rotation were computed at the power section of the crank cycle (12 o'clock to 6 o'clock crank positions) using three-dimensional kinematics. Greater lateral spine inclination (p?p?p?相似文献   

13.
This critical review reflects the current state of cadence research during cyclical activities at different intensities. Moreover, this review aims at making suggestions in the areas of evaluation, therapy and sporting performance in the light of all the different results reported in studies. A large number of researchers have tried to determine the 'optimal' cadence from imposed, preferred or spontaneously chosen cadences in order to improve efficiency and performances. Results are sometimes conflicting and difficult to explain or interpret. The authors have studied the variations in cadences using a reduced number of parameters, without links between energetic (oxygen consumption, ventilation), biomechanical (force, electromyography) and/or perceived parameters (rating of perceived exertion). Conclusions point out that the 'optimal' cadence cannot be unique and must be associated with the objectives and individual characteristics of the subject (skills and training level, anthropometric parameters). In the area of training and reconditioning, cadences would have to be set in relation to the nature of cyclical activities and the subjects' condition.  相似文献   

14.
The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev x min(-1)) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.  相似文献   

15.
The aim of this study was to determine the response of cyclists to manipulations of cadence and power output in terms of force application and plantar pressure distribution. Two groups of cyclists, 17 recreational and 12 competitive, rode at three nominal cadences (60, 80, 100 rev min -1 ) and four power outputs (100, 200, 300, 400 W) while simultaneous force and in-shoe pressure data were collected. Two piezoelectric triaxial force transducers mounted in the right pedal measured components of the pedal force and orientation, and a discrete transducer system with 12 transducers recorded the in-shoe pressures. Force application was characterized by calculating peak resultant and peak effective pedal forces and positive and negative impulses. In-shoe pressures were analysed as peak pressures and as the percent relative load. The force data showed no significant group effect but there was a cadence and power main effect. The impulse data showed a significant three-way interaction. Increased cadence resulted in a decreased positive impulse, while increased power output resulted in an increased impulse. The competitive group produced less positive impulse but the difference became less at higher cadences. Few between-group differences were found in pressure, notable only in the pressure under the first metatarsal region. This showed a consistent pattern of in-shoe pressure distribution, where the primary loading structures were the first metatarsal and hallux. There was no indication that pressure at specific sites influenced the pedal force application. The absence of group differences indicated that pressure distribution was not the result of training, but reflected the intrinsic relationship between the foot, the shoe and the pedal.  相似文献   

16.
Abstract

Cadence is one of the only variables cyclists can adjust to manage their performance and fatigue during an event. Not surprisingly, cadence has received a great deal of attention from the scientific community in an effort to identify the cadence that optimizes power output while minimizing the fatigue that is incurred. The literature appears to present conflicting results with little consensus as regards the optimal pedalling cadence. This is in large part due to the inconsistent definition of the term “optimal” cadence, which has been used to describe energetic cost, muscular stress, and perception of effort. The issue is further confounded by the workload-dependent nature of the “optimal” cadence – that is, at higher power outputs, the optimized cadence is different from that at lower power outputs. Although the optimal cadence is different for energetic, muscular, and perceptual definitions, the curves that describe the effect of changes in cadence on these variables consistently exhibit a J-shaped response. This suggests that there is an underlying principle that is common to each of the definitions. Indeed, it would appear that the response of both the cardio-respiratory system (energetic cost) and the muscular system (muscular stress) is determined by the types of muscle motor units that are recruited during the exercise. Furthermore, although part of the response may be due to the inherent differences in the characteristics between the different motor units, the absolute contraction velocity relative to fibre type optimum may be of greater significance. Even when the power output is increased, the shape of the response curves to changes in cadence remains constant, although the nadir of the curve does shift to the right for increasing power outputs. We propose that the point at which the energetic vs. power and the muscular stress vs. power curves intercept is defined by the cadence at which the perceived effort is minimized (i.e. the preferred cadence). However, cadence fluctuations occur under field conditions that are unrelated to physiological factors and, therefore, the ability to identify an “optimal” cadence is limited to the laboratory environment and specific field conditions.  相似文献   

17.
Non-circular chainrings theoretically enhance cycling performance by increasing effective chainring diameter and varying crank velocity, but research has failed to consistently reproduce the benefits in cycling trials. The aim of this study was (1) to investigate the effect of different chainring shapes on sagittal knee joint moment and sagittal lower limb joint powers and (2) to investigate whether alterations are affected by cadence and workload. Fourteen elite cyclists cycled in six conditions (70, 90 and 110 rpm, each at 180 and 300 W), for 2 min each, using three chainrings of different ovalities (1.0–1.215). Kinematic data and pedal forces were collected. For most conditions, only the chainring with the highest ovality (1.215) was characterised by smaller sagittal knee joint moments, smaller relative sagittal knee joint power contribution and larger relative sagittal hip joint power contribution, which suggests a change from maximising efficiency to maximising power production. Effect sizes increased with higher cadences, but not with higher workload. This study has application for athletes, clinicians and sports equipment industry as a non-circular chainring can change joint-specific power generation and decrease knee joint moment, but certain ovality seems to be necessary to provoke this effect.  相似文献   

18.
ABSTRACT

Exercise at different cadences might serve as potential stimulus for functional adaptations of the brain, because cortical activation is sensitive to frequency of movement. Therefore, we investigated the effects of high (HCT) and low cadence training (LCT) on brain cortical activity during exercise as well as endurance performance.

Cyclists were randomly assigned to low and high cadence training. Over the 4-week training period, participants performed 4 h of basic endurance training as well as four additional cadence-specific exercise sessions, 60 min weekly. At baseline and after 4 weeks, participants completed an incremental exercise test with spirometry and exercise at constant load with registration of electroencephalogram (EEG).

Compared with LCT, a greater increase of frontal alpha/beta ratio was confirmed in HCT. This was based on a lower level of beta activity during exercise. Both groups showed similar improvements in maximal oxygen consumption and power at the individual anaerobic threshold.

Whereas HCT and LCT elicit similar benefits on aerobic performance, cycling at high pedalling frequencies enables participants to perform an exercise bout with less cortical activation.  相似文献   

19.
This study aimed to establish the nature of lower extremity intra-limb coordination variability in cycling and to investigate the coordinative adaptations that occur in response to changes in cadence and work rate. Six trained and six untrained males performed nine pedalling bouts on a cycle ergometer at various cadences and work rates (60, 90, and 120 revolutions per minute (rpm) at 120, 210, and 300W). Three-dimensional kinematic data were collected and flexion/extension angles of the ankle, knee, and hip joints were subsequently calculated. These data were used to determine two intra-limb joint couplings [hip flexion/extension-knee flexion/extension (HK) and knee flexion/extension-ankle plantar-flexion/dorsi-flexion (KA)], which were analysed using continuous relative phase analysis. Trained participants displayed significantly (p < 0.05) lower coordination variability (6.6 +/- 4.0 degrees) than untrained participants (9.2 +/- 4.7 degrees). For the trained subjects, the KA coupling displayed significantly more in-phase motion in the 120 rpm (19.2 +/- 12.3 degrees) than the 60 (30 +/- 7.1 degrees) or 90 rpm (33.1 +/- 7.4 degrees) trials and the HK coupling displayed significantly more in-phase motion in the 90 (33.3 +/- 3.4 degrees) and 120 rpm (27.9 +/- 13.6 degrees) than in the 60 rpm trial (36.4 +/- 3.5 degrees). The results of this study suggest that variability may be detrimental to performance and that a higher cadence is beneficial. However, further study of on-road cycling is necessary before any recommendations can be made.  相似文献   

20.
This study compared heart rate recovery (HRR) after incremental maximal exercise performed at the same external power output (Pext) on dry land ergocycle (DE) vs. immersible ergocycle (IE). Fifteen young healthy participants (30?±?7 years, 13 men and 2 women) performed incremental maximal exercise tests on DE and on IE. The initial Pext on DE was 25?W and was increased by 25?W/min at a pedalling cadence between 60 and 80?rpm, while during IE immersion at chest level in thermoneutral water (30°C), the initial Pext deployment was at a cadence of 40?rpm which was increased by 10?rpm until 70?rpm and thereafter by 5?rpm until exhaustion. Gas exchange and heart rate (HR) were measured continuously during exercise and recovery for 5?min. Maximal HR (DE: 176?±?15 vs. IE 169?±?12?bpm) reached by the subjects in the two conditions did not differ (P?>?.05). Parasympathetic reactivation parameters (ΔHR from 10 to 300?s) were compared during the DE and IE HR recovery recordings. During the IE recovery, parasympathetic reactivation in the early phase was more predominant (HRR at Δ10–Δ60?s, P?<?.05), but similar in the late phase (HRR at Δ120–Δ300?s, P?>?.05) when compared to the DE condition. In conclusion, incremental maximal IE exercise at chest level immersion in thermoneutral water accelerates the early phase parasympathetic reactivation compared to DE in healthy young participants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号