首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
牛奶是一种天然饮料,主要成分有水、脂肪、磷脂、蛋白质、乳糖、无机盐等,比例相对固定。与商业的运动饮料相比,在促进运动表现方面具有优势。本文通过查阅大量国外研究文献,从牛奶的成分、牛奶对耐力运动过程及其恢复、牛奶对肌肉增长三方面作用进行分析,综述牛奶作为一种新型的综合运动饮料,对于促进运动表现、延缓运动疲劳、加快运动后恢复等方面的应用机制和价值。  相似文献   

2.
雄激素促进骨骼肌蛋白质合成是通过雄激素受体作用的,高原训练时高原低氧抑制蛋白质合成,导致肌肉质量下降。综述了雄激素受体的结构,作用机理,在骨骼肌中的作用机制,低氧和运动对雄激素受体的作用,明确低氧和运动条件下雄激素受体在骨骼肌蛋白质合成中的可能作用机理。  相似文献   

3.
运动对大鼠骨骼肌形态和代谢机能的影响   总被引:9,自引:0,他引:9  
以大鼠为实验对象, 观察研究运动训练对大鼠骨骼肌形态及代谢机能的影响。16只健康、成年SD大鼠随机分为2组, 安静组 (n=8), 运动组 (n=8)。运动方案为跑台训练, 持续 8 周。研究发现, 运动组骨骼肌形态无异常变化, 肌纤维横截面积稍减小, 变化不显著。运动训练后, 骨骼肌及血清 IGF-I水平明显升高。此外,运动组琥珀酸脱氢酶活性有所下降, 而腓肠肌ATP酶活性明显升高。结论  (1) 运动训练有效调解了体内的蛋白质代谢平衡。(2) 运动训练可以改变骨骼肌及血清IGF-I水平, 并对其蛋白质代谢产生一定的作用。(3) 运动训练在一定程度上改变了骨骼肌代谢酶活性, 从而影响其代谢功能, 以满足不同类型运动的需要。  相似文献   

4.
目的:研究大鼠运动后骨骼肌细胞膜葡萄糖转运体4(Glucose transporter 4,GLUT4)转位及其时相性变化,并探索补糖和刺五加对其影响。方法:128只SD大鼠大鼠随机分为训练对照、训练补糖、训练补刺五加皂甙和训练补刺五加皂甙和糖4组,在糖原消耗性运动前和运动后不同时间点(0 h,4 h,12 h)采样,共16小组(n=8)。采用Western blotting方法分析骨骼肌细胞质膜和细胞膜的GLUT4的相对蛋白含量。结果:(1)糖原耗竭性运动后骨骼肌细胞内质膜GLUT4相对蛋白量明显降低(105.66±10.54 vs 98.05±11.89)。补充刺五加提高了骨骼肌的骨骼肌细胞内质膜GLUT4蛋白含量。(2)糖原耗竭性运动后即刻骨骼肌细胞膜的GLUT4相对蛋白量明显升高(100.47±10.40 vs 188.14±24.31)。补糖和刺五加可显著升高运动后骨骼肌细胞膜GLUT4相对蛋白含量。结论:运动后骨骼肌细胞膜GLUT4转位增加,补糖或补刺五加均可以促使运动后GLUT4转位增加。  相似文献   

5.
乳清蛋白与运动营养   总被引:16,自引:1,他引:15  
当今竞技体育对运动员的体能要求越来越高,普通膳食蛋白质的质量已不能满足训练和比赛的需要,乳清蛋白是一类利用先进工艺从牛奶中提取的蛋白质,它具有很高的生物学价值,它对运动能力的影响主要表现为;提供长时问运动时骨骼肌的能量供应;促进蛋白合成和肌肉增长;清除自由基和抗氧化性;提高机体免疫能力和延缓中枢疲劳,乳清蛋白是一种理想的运动营养食品,它在运动营养中将发挥越来越重要的作用。  相似文献   

6.
目的:通过蛋白质组学研究手段分析重复大强度运动对骨骼肌损伤修复过程中蛋白质组表达情况,并从蛋白质组变异角度分析重复运动对骨骼肌损伤修复可能的作用机制;方法:72只Wistar大鼠随机分为正常对照组、一次离心运动组及一周后重复运动组.对照组不运动,其余组大鼠进行下坡跑,速度为18 m/min,坡度-16°,运动时间为30 min后休息5min,再运动30 min.运动时间共60 min.重复运动在一次运动后一周后进行.在运动后即刻、24 h、48 h、72h、168h取股四头肌进行蛋白质提取、双向电泳及特异蛋白质鉴定,并按照蛋白质功能对特异蛋白质进行分类;结果:重复运动后的修复过程中,能量代谢相关蛋白和细胞损伤修复相关蛋白表达在重复运动组中主要表现为下调为主,特别是在运动后0~72h之间.重复运动组中骨骼肌细胞结构蛋白0~24 h内上调和下调数目无明显差异,在72h时,下调数目明显多于上调蛋白数目.损伤修复过程中表达变化的蛋白质中,能量代谢相关蛋白有异柠檬酸脱氢酶、磷酸葡萄糖变位酶、烟酰胺腺嘌呤二核苷酸脱氢酶、血色素结合蛋白、丙酮酸脱氢酶、磷酸丙糖异构酶,细胞损伤修复相关蛋白有泛素羧基末端水解酶、免疫球蛋白λ轻链、胞内氯离子通道蛋白、蛋白磷酸酶2C蛋白、谷胱苷肽过氧化物酶、双功能过氧化物酶等表达活跃,骨骼肌细胞结构蛋白有热休克蛋白、内质网驻地蛋白、角蛋白、肌球蛋白、线粒体内膜蛋白等.结论:重复运动后能量代谢关键酶表达,加速损伤细胞能量供应,同时在24h-48h之间进行可以减缓骨骼肌收缩蛋白降解、清除自由基、加快细胞胞吞、减缓炎症反应从而加快骨骼肌损伤修复.  相似文献   

7.
目的:观察补充蛋白质对骨骼肌细胞骨架desmin和vimentin免疫染色的影响,研究蛋白质对运动性骨骼肌微结构损伤的保护作用。方法:雄性SD大鼠100只按补充安慰剂、大豆分离蛋白,运动与不运动,以及运动后即刻、12 h、24 h和48 h等不同时间随机分为10组,所有动物膳食平衡1 w后进行实验。运动组大鼠以(20±1)m/min的速度,坡度为-16°,持续性跑台训练120 min。实验组和对照组所有动物在膳食平衡期间每天分别灌胃15%大豆分离蛋白2 ml和等量的纯净水。结果:补充大豆分离蛋白可减轻大鼠离心运动后骨骼肌细胞骨架desmin免疫染色的丢失,增强vimentin免疫染色。  相似文献   

8.
谢琴 《辽宁体育科技》2010,32(3):29-30,33
隔药灸神阙可以增加耐力训练再力竭大鼠骨骼肌组织中的抗氧化酶活性,提高骨骼肌组织的抗氧化功能,减轻耐力训练再力竭运动对大鼠骨骼肌组织造成的脂质过氧化损伤,改善运动造成的自由基代谢紊乱。  相似文献   

9.
陈军 《体育世界》2009,(11):55-56
目的:为探讨不同强度的运动训练对大鼠骨骼肌自由基代谢的影响。方法:对Wistar大鼠进行8周不同强度的跑台运动训练,观察了运动训练对大鼠在不同功能状态下骨骼肌中自由基代谢的影响。结果:在安静状态下以及力竭运动后对照组大鼠骨骼肌中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)的活性都明显低于训练组,丙二醛(MDA)的含量明显高于训练组。结论:三种不同强度的运动训练都能提高大鼠安静状态下骨骼肌中SOD、CAT的活性,降低大鼠骨骼肌中MDA含量,抑制因力竭运动所导致的SOD、CAT活性的降低,而且中、大强度运动训练的效果强于小强度运动训练。  相似文献   

10.
采用文献资料法,分析了运动训练中营养素的补充最佳时机以及搭配方法。研究认为,运动员应该在运动训练前15min开始,运动中每隔15-20min以及运动后45min内饮用大约400ml包含蛋白质、高血糖碳水化合物、钠、钾、镁、维生素C、E的混合饮料;运动后恢复期2h内饮用碳水化合物、蛋白质为主的复合饮料或主食;运动后5h到下一次运动开始前再次服用相同量的碳水化合物和蛋白质(氨基酸)复合饮料。  相似文献   

11.
Abstract

Post-exercise recovery is a multi-facetted process that will vary depending on the nature of the exercise, the time between exercise sessions and the goals of the exerciser. From a nutritional perspective, the main considerations are: (1) optimisation of muscle protein turnover; (2) glycogen resynthesis; (3) rehydration; (4) management of muscle soreness; (5) appropriate management of energy balance. Milk is approximately isotonic (osmolality of 280–290?mosmol/kg), and the mixture of high quality protein, carbohydrate, water and micronutrients (particularly sodium) make it uniquely suitable as a post-exercise recovery drink in many exercise scenarios. Research has shown that ingestion of milk post-exercise has the potential to beneficially impact both acute recovery and chronic training adaptation. Milk augments post-exercise muscle protein synthesis and rehydration, can contribute to post-exercise glycogen resynthesis, and attenuates post-exercise muscle soreness/function losses. For these aspects of recovery, milk is at least comparable and often out performs most commercially available recovery drinks, but is available at a fraction of the cost, making it a cheap and easy option to facilitate post-exercise recovery. Milk ingestion post-exercise has also been shown to attenuate subsequent energy intake and may lead to more favourable body composition changes with exercise training. This means that those exercising for weight management purposes might be able to beneficially influence post-exercise recovery, whilst maintaining the energy deficit created by exercise.  相似文献   

12.
The Akt-mTOR-p70S6k-4E-BP1 signaling pathway is a well-considered regulator of protein synthesis in the context of strength training. This process is essential for exercise-induced skeletal muscle growth. The objective of this review article was to analyze the design of acute resistance training protocols and evaluate the possible impact of different loading conditions on the activation of growth-related signaling cascades in human skeletal muscle. In all, 12 human studies were included in this review. The training intensity in the studies varied between 30% 1RM (one repetition maximum) and maximal load. The signaling proteins were measured in a time range between immediately and 24?h after training.The phosphorylation of all signaling proteins increased to different levels after resistance training, tending to baseline more than 6?h post training. In particular, the hypertrophic associated p70S6k showed the highest phosphorylation acutely after the load and decreased consistently after 6?h. Training intensity and volume seemed to have an influence on the extent of protein phosphorylation, which, however, was not systematic or consistent. An obvious training methodological consequence (load and volume) for hypertrophic resistance training regime could not be devised. Further research is required to systematically vary training parameters to determine the influence of a certain stress zone on the signaling activation. Future research should aim to identify the ideal level of training intensity necessary to achieve the greatest possible extent of intramuscular anabolic signaling through intense activation of the signaling cascade to induce growth in human skeletal muscle.  相似文献   

13.
Abstract

The purpose of this study was to determine the recovery rate of football skill performance following resistance exercise of moderate or high intensity. Ten elite football players participated in three different trials: control, low-intensity resistance exercise (4 sets, 8–10 repetitions/set, 65–70% 1 repetition maximum [1RM]) and high-intensity resistance exercise (4 sets, 4–6 repetitions/set, 85–90% 1RM) in a counterbalanced manner. In each experimental condition, participants were evaluated pre, post, and at 24, 48, 72 h post exercise time points. Football skill performance was assessed through the Loughborough Soccer Passing Test, long passing, dribbling, shooting and heading. Delayed onset muscle soreness, knee joint range of motion, and muscle strength (1RM) in squat were considered as muscle damage markers. Blood samples analysed for creatine kinase activity, C-reactive protein, and leukocyte count. Passing and shooting performance declined (P < 0.05) post-exercise following resistance exercise. Strength declined post-exercise following high-intensity resistance exercise. Both trials induced only a mild muscle damage and inflammatory response in an intensity-dependent manner. These results indicate that football skill performance is minimally affected by acute resistance exercise independent of intensity suggesting that elite players may be able to participate in a football practice or match after only 24 h following a strength training session.  相似文献   

14.
目的:(1)观察ATGL基因敲除小鼠耐力训练时胰岛素抵抗、工作肌糖转运蛋白及线粒体密度的变化;(2)测定Akt、PKC、PPAR-α蛋白激活及含量,探究其与胰岛素抵抗、工作肌糖转运蛋白及线粒体密度的变化之间的关系。方法:ATGL-/-、ATGL+/-和C57BL/6J小鼠跑台耐力训练训练7天,测定小鼠体重、肌糖原、血糖、血胰岛素和胰岛素抵抗,蛋白印记法测定腓肠肌和比目鱼肌GLUT-4(内外膜)、p-Akt、Akt、p-PKC、PKC含量和PPAR-α水平。结果:(1)运动训练后,腓肠肌和比目鱼肌糖原含量、HOMA-IR指数存在基因类型、运动训练的差异(P<0.05)。运动训练引起血糖和血胰岛素在基因类型的差异(P<0.05)。(2)运动训练后,腓肠肌和比目鱼肌Akt、PKC、磷酸化水平、腓肠肌总Akt、PPAR-α蛋白表达存在基因类型、运动训练的差异(P<0.05)。比目鱼肌总Akt表达、腓肠肌和比目鱼肌总PKC、PPAR-α蛋白运动训练的差异不具有显著性意义(P>0.05)。结论:耐力训练时,ATGL通过上调Akt和PKC促进胰岛素敏感性和改善胰岛素抵抗;ATGL上调PPAR-α起到促进线粒体含量。  相似文献   

15.
目的:为了探讨"由牛奶提纯的蛋白粉"和"由大豆提纯的蛋白粉"在增肌效果方面是否存在差异,开展此实验研究。方法:研究过程中分别在健美爱好者组群(N=40)和普通人组群(N=40)进行了为期9周的补充不同蛋白粉对于增肌效果影响的观察实验。实验分组:利用随机分组的方式将40名健美爱好者分为"补充牛奶提纯的蛋白粉组"(即"健美爱好者M组",N=20)和"补充大豆提纯的蛋白粉组"(即"健美爱好者B组",N=20);同样利用随机分组的方式将40名普通人分为"补充牛奶提纯的蛋白粉组"(即"普通人M组",N=20)和"补充大豆提纯的蛋白粉组"(即"普通人B组",N=20)。结果:在对实验前后身体成分指标数据的统计学比较分析中发现:健美爱好者M组和B组在9周的蛋白粉补充配合力量训练的实验中肌肉增长效果显著(P<0.01或P<0.05),健美爱好者M组12.94%的肌肉增长率明显高于健美爱好者B组的6.31%;而普通人M组和普通人B组在为期9周的单纯补充蛋白粉的观察实验中其肌肉重量虽然也获得了一定程度的增长,但增肌效果不显著(P>0.05),而普通人M组2.95%的肌肉增长率也高于普通人B组的1.86%。结论:通过对健美爱好者组群和普通人组群补充不同蛋白粉对增肌效果影响的对比实验发现:与"大豆提纯的蛋白粉"相比,"牛奶提纯的蛋白粉"的增肌效果更明显;并且无论单纯补充哪一种蛋白粉,其肌肉增长效果均不明显;只有在补充蛋白粉的同时配合力量训练等身体活动,才能获得较好的肌肉增长效果。  相似文献   

16.
ObjectiveIn this review, we critically evaluate studies directly comparing the effects of plyometric vs. resistance training on skeletal muscle hypertrophy.MethodsWe conducted electronic searches of PubMed/MEDLINE, Scopus, SPORTDiscus, and Web of Science to find studies that explored the effects of plyometric vs. resistance training on muscle hypertrophy.ResultsEight relevant studies were included in the review. Six studies compared the effects of plyometric vs. resistance training on muscle hypertrophy, while 2 studies explored the effects of combining plyometric and resistance training vs. isolated resistance training on acute anabolic signaling or muscle hypertrophy. Based on the results of these studies, we conclude that plyometric and resistance training may produce similar effects on whole muscle hypertrophy for the muscle groups of the lower extremities. Therefore, it seems that plyometric training has a greater potential for inducing increases in muscle size than previously thought. Despite the findings observed at the whole muscle level, the evidence for the effects of plyometric training on hypertrophy on the muscle fiber level is currently limited for drawing inferences. Compared to isolated resistance training, combining plyometric and resistance exercise does not seem to produce additive effects on anabolic signaling or muscle growth; however, this area requires future study. The limitations of the current body of evidence are that the findings are specific to (a) musculature of the lower extremities, (b) short-term training interventions that lasted up to 12 weeks, and (c) previously untrained or recreationally active participants.ConclusionThis review highlights that plyometric and resistance training interventions may produce similar effects on whole muscle hypertrophy, at least for the muscle groups of the lower extremities, in untrained and recreationally trained individuals, and over short-term (i.e., ≤12 weeks) intervention periods.  相似文献   

17.
The aims of this study were to assess changes in muscle architecture, isometric and dynamic strength of the leg extensor muscles, resulting from dynamic resistance training, and the relationships between strength and muscle architecture variables. The participants (n = 30) were randomly assigned to one of two groups. The training group (n = 16; age 21.8 +/- 2.3 years, body mass 74.8 +/- 9.2 kg, height 1.75 +/- 0.08 m) performed dynamic resistance training for 13 weeks. The control group (n = 14; age 19.9 +/- 1.5 years, body mass 74.0 +/- 8.5 kg, height 1.76 +/- 0.05 m) did not perform any resistance training. Maximal dynamic and isometric strength were tested in both groups, before and after the training period. The members of the training group used the free-weight squat lift (90 degrees ) as their training exercise. The concentric phase of the squat was performed explosively. Skeletal muscle architecture of the vastus lateralis was visualized using ultrasonography. At the end of the study, significant increases in vastus lateralis muscle thickness (+6.9%, P < 0.001), fascicle length (+10.3%, P < 0.05), one-repetition maximum (+8.2%, P < 0.05), rate of force development (+23.8%, P < 0.05) and average force produced in the first 500 ms (+11.7%, P < 0.05) were seen only in the training group. Adaptations to the muscle architecture in the training group limited the loss of fibre force, and improved the capacity for developing higher velocities of contraction. The architectural changes in the training group were similar to those seen in studies where high-speed training was performed. In conclusion, dynamic resistance training with light loads leads to increases in muscle thickness and fascicle length, which might be related to a more efficient transmission of fibre force to the tendon.  相似文献   

18.
Previous research has demonstrated significant decreases in pain perception in healthy individuals following both aerobic and upper body resistance exercise, but research on circuit training has been limited. The purpose of the study was to determine the effects of a strenuous bout of dynamic circuit resistance exercise on pain threshold and pain tolerance in conjunction with changes in blood lactate levels, heart rate (HR), and perceived exertion. A sample of 24 college-age students participated in 2 sessions: (1) a maximal strength testing session and (2) a circuit training bout of exercise that consisted of 3 sets of 12 repetitions with a 1:1 work to rest ratio at 60% one-repetition maximum (1-RM) predicted from a three-repetition maximum (3-RM) for 9 exercises. Participants exhibited increases in pain tolerance, blood lactate levels, HR and perceived exertion following resistance exercise. Preference for exercise intensity was positively correlated with lactate post exercise and tolerance for exercise intensity was positively correlated with pain tolerance and lactate post exercise. In conclusion, this is the first study to demonstrate increases in pain tolerance following a dynamic circuit resistance exercise protocol and disposition for exercise intensity may influence lactate and pain responses to circuit resistance exercise.  相似文献   

19.
The purpose of this study was to assess the effects of heavy resistance, explosive resistance, and muscle endurance training on neuromuscular, endurance, and high-intensity running performance in recreational endurance runners. Twenty-seven male runners were divided into one of three groups: heavy resistance, explosive resistance or muscle endurance training. After 6 weeks of preparatory training, the groups underwent an 8-week resistance training programme as a supplement to endurance training. Before and after the 8-week training period, maximal strength (one-repetition maximum), electromyographic activity of the leg extensors, countermovement jump height, maximal speed in the maximal anaerobic running test, maximal endurance performance, maximal oxygen uptake ([V·]O(?max)), and running economy were assessed. Maximal strength improved in the heavy (P = 0.034, effect size ES = 0.38) and explosive resistance training groups (P = 0.003, ES = 0.67) with increases in leg muscle activation (heavy: P = 0.032, ES = 0.38; explosive: P = 0.002, ES = 0.77). Only the heavy resistance training group improved maximal running speed in the maximal anaerobic running test (P = 0.012, ES = 0.52) and jump height (P = 0.006, ES = 0.59). Maximal endurance running performance was improved in all groups (heavy: P = 0.005, ES = 0.56; explosive: P = 0.034, ES = 0.39; muscle endurance: P = 0.001, ES = 0.94), with small though not statistically significant improvements in [V·]O(?max) (heavy: ES = 0.08; explosive: ES = 0.29; muscle endurance: ES = 0.65) and running economy (ES in all groups < 0.08). All three modes of strength training used concurrently with endurance training were effective in improving treadmill running endurance performance. However, both heavy and explosive strength training were beneficial in improving neuromuscular characteristics, and heavy resistance training in particular contributed to improvements in high-intensity running characteristics. Thus, endurance runners should include heavy resistance training in their training programmes to enhance endurance performance, such as improving sprinting ability at the end of a race.  相似文献   

20.
Currently, it is unclear whether manipulation of movement velocity during resistance exercise has an effect on hypertrophy of specific muscles. The purpose of this systematic review of literature was to investigate the effect of movement velocity during resistance training on muscle hypertrophy. Five electronic databases were searched using terms related to movement velocity and resistance training. Inclusion criteria were randomised and non-randomised comparative studies; published in English; included healthy adults; used dynamic resistance exercise interventions directly comparing fast training to slower movement velocity training; matched in prescribed intensity and volume; duration ≥4 weeks; and measured muscle hypertrophy. A total of six studies were included involving 119 untrained participants. Hypertrophy of the quadriceps was examined in five studies and of the biceps brachii in two studies. Three studies found significantly greater increases in hypertrophy of the quadriceps for moderate-slow compared to fast training. For the remaining studies examining the quadriceps, significant within-group increase in hypertrophy was found for only moderate-slow training in one study and for only fast training in the other study. The two studies that examined hypertrophy of the biceps brachii found greater increases for fast compared to moderate-slow training. Caution is required when interpreting the findings from this review due to the low number of studies, hence insufficient data. Future longitudinal randomised controlled studies in cohorts of healthy adults are required to confirm and extend our findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号