首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
《时代数学学习》2005,(12):41-41
图1如图1,连结CD,将△ACD以D为旋转中心顺时针旋转60°到△BC′D,连接CC′则∠C′DB=∠CDA,CD=C′D,BC′=AC=b,∴∠C′DC=∠BDA=60°.∴△CDC′是等边三角形,∴CC′=CD.∴在△CBC′中,CC′≤CB+C′B=a+b.∴CD≤a+b.当C′,B,C在同一条直线上时,CD取最大值a+b.这时∠DBC′+∠DBC=180°.又∠D B C′=∠D A C,∠D B A=∠DAB=60°,∠BCA+∠CBA+∠CAB=180°,∴∠DAC+∠DBC=180°,∴∠CBA+∠CAB=60°,∴∠ACB=120°.故当∠ACB为120°时,CD取最大值,最大值为a+b.问题2.10参考答案…  相似文献   

2.
1.(59a+b)cm. 提示:环套环拉直时,两环间距为acm(见原题图),第 一个与最后一个环各有一个边缘长b-a2cm.因此,60个环长为60a+b-a2× 2=59a+b(cm). 2.120. 提示:如图1,因为△ABC的三边相等,所以它 的三个内角都是60°.故在△ACD与△CBE中,因为AD=CE,∠CAD=∠BCE =60°,AC=CB,所以△ACD≌△CBE(SAS).所以∠3=∠1.因为∠3+∠2= 60°,所以∠1+∠2=60°.所以∠BFC=180°-60°=120°. 图1        图2        图3 3.提示:如图2,以ME为轴,将△DME翻折至另一侧,得△EMF,因为 ∠DME=90°,故点D,M,F共线,连…  相似文献   

3.
三角形的内角和定理及推论有着广泛的应用,现归类举例说明. 一、求角度的大小例1 在△ABC中,若∠A:∠B:∠C=1:2:3,则∠C= ——. 分析与解:依题意,不妨设∠A=x°,则∠B=2x°,∠C=3x°,由三角形内角和定理知x+2x+3x=180°,即x=30°,故∠C=3°=90°. 例2 如图1,∠α=125°,∠1=50°,则∠β的度数是——. 分析:易求得∠2=55°,由推论2知∠β=∠1+∠2=50°+55°-105°  相似文献   

4.
证法 5 :如图 5 ,作AC的延长线CE ,则点C处有一周角 ,即∠BCE+∠DCE+∠BCD =36 0° .∵∠BCE =∠ 1+∠B ,∠DCE=∠ 2 +∠D ,∴ (∠ 1+∠B) +(∠ 2 +∠D) +∠BCD =36 0° ,即 ∠BAD +∠B+∠BCD+∠D =36 0° .证法 6 :如图 6 ,若延长BA、CD相交于点E ,则有∠B +∠C =∠ 1+∠ 2 ,∴∠BAD+∠B +∠C+∠CDA=(180°-∠ 1) +∠B +∠C+(180°-∠ 2 )=36 0°- (∠ 1+∠ 2 ) +(∠B+∠C)=36 0°- (∠ 1+∠ 2 ) +(∠ 1+∠ 2 )=36 0° .证法 7:如图 7,若CD∥AB时 ,过点D作DE∥AB交BC于点E ,则∠A =180° -∠ 1,∠B =∠ 2 ,∴…  相似文献   

5.
1.基本知识(1)三角形内角和等于180°.(2)n边形内角和等于 (n-2)·180°.2.基本事实(1)在图1中,易证图1∠A+∠B=∠C+∠D.(2)在图2中,易证∠A+∠B+∠C =∠D+∠E+∠F. 按照以上知识,通过添加辅助线,就可以较容易地求出某些一笔画图形中的多角和.  相似文献   

6.
在解圆的有关问题时,若能巧妙地作出圆的直径,将能获得简捷的解题思路,现举数例如下.例1(2005年宁波市)如图1,△ABC内接于⊙O,∠B=30°,AC=2cm.⊙O的半径为.解:连AO且延长交⊙O于D,连CD,则∠ACD=90°,∠D=∠B=30°,所以AD=2AC=2×2=4,所以⊙O的半径为2cm.例2(2005年自贡市)如图2,P是⊙O的弦CB延长线上一点,点A在⊙O上,且∠BAP=∠C.求证:PA是⊙O的切线.证明:作⊙O的直径AD,连BD,则∠C=∠D,∠ABD=90°,即∠D+∠BAD=90°,所以∠C+∠BAD=90°.因为∠C=∠PAB,所以∠BAD+∠PAB=90°,即AP⊥AD,所以PA为⊙O的切线.例3(…  相似文献   

7.
(接上期)定理3两条平行线,第三条直线和它们相交,则内错角相等.分析在图5中,直线l2∥l1,l3与l1,l2相交,要想证图5明∠1=∠2,根据基本事实2,只要能证明∠2=∠3就行了.证明因为∠1和∠3是,所以=().又已知∠2=∠3,所以=().定理4两条平行线被第三条直线所截,则同旁内角互补.分析在图6中,直线l2∥l1,直线l3与l2,l1相交.∠1和∠2是同旁内角.要想证明∠1+∠2=180°,根据基本事实2,图6只要能证明∠2=∠3就可以了.证明因为∠1+=180°(),又已知∥,所以∠2=∠3,所以∠1+∠2=().定理5试证明:三角形ABC三内角之和∠A+∠B+∠C=180°.分析在图7中,CE∥B…  相似文献   

8.
在几何中,基本图形是较复杂图形的基础,抓住一些基本图形的特性,许多几何问题常可迎刃而解,现举一例说明.如图1,线段AB、CD相交于点P,则∠A+∠D=∠B+∠C.这是一个很有用的基本图形,由于这两个三角形有一个角是对顶角,因此我们常称它为对顶三角形.其性质(图1中∠A+∠D=∠B+∠C)很容易得到.应用这一基本图形及其性质可以巧解许多问题.一、寻找基本图形解题例1如图2,求∠A+∠B+∠C+∠D+∠E+∠F的度数.解:显然∠A+∠B=∠2+∠3,∠C+∠D=∠1+∠2,∠E+∠F=∠1+∠3,所以∠A+∠B+∠C+∠D+∠E+∠F=2(∠1+∠2+∠3)=2×180°=360°.二、构…  相似文献   

9.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

10.
学数学,既要善于抓住不变的根本,又要善于灵活地在变化中认识、处理和解决问题。三角形的内角和定理及其推论常常是几何问题中的隐含条件,合理和灵活地应用它们,也常常能使几何题达到一题多解和一题多变的效果。图1一、一题多解例如图1,E为△ABC内一点,求证:(1)∠AEB=∠1+∠2+∠C·(2)∠AEB>∠C·解题思路1:充分利用三角形内角和定理证法1:如图2(1)∵∠1+∠2+∠C+∠3+∠4=180°∴∠1+∠2+∠C=180°-(∠3+∠4)∵在△AEB中,∠AEB=180°-(∠3+∠4)图2∴∠AEB=∠1+∠2+∠C(2)∵∠AEB=∠1+∠2+∠C∴∠AEB-∠C=∠1+∠2>0∴∠AEB>∠…  相似文献   

11.
题目如图1,四边形ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是().(A)∠APB=∠EPC(B)∠APE=90°(C)P是BC边的中点(D)BP∶BC=2∶3本题答案应该是C.但许多同学是这样解的:当∠APE=90°,∠1+∠α=90°,又因为∠β+∠1=90°,所以∠α=∠β,又因为∠B=∠C,所以△ABP∽△PCE.故选B.选择支B能否推出△ABP∽△ECP?可以换个角度思考,即当△ABP∽△PCE时,能否求出BP的长呢?不妨设正方形的边长为4a,BP=x,则CP=4a-x,CE=2a,根据相似三角形的对应边成比例可得CBEP=PACB,即2xa=4a4-…  相似文献   

12.
有这样一道题,已知:如图1,O是ABC内任意一点,试说明:∠AOB=∠1+∠2+∠C(留给同学们思考)。我们可以由这个图形中抽出“”,它形如圆规状,就把它叫做“规形”(如图2),由上可知∠BOC=∠A+∠B+∠C就是“规形”的性质。现就用“规形”这一性质来求角度之和。∴∠A+∠B+∠C+∠D+∠E+∠F=360°.例2如图4,求∠A+∠B+∠C+∠D+∠E的度数。解:由“规形”图可知,ABOC为“规形”,由性质得∠1=∠A+∠B+∠C又∵∠1=∠2而∠2+∠D+∠E=180°∴∠A+∠B+∠D+∠E=180°.例3如图5,求∠A+∠B+∠C+∠D+∠E的度数解:由“规形”图可知,ACOD为“规…  相似文献   

13.
1.B.2.A.提示:利用平移知AH,HG与ED即可.3.∠AEC=43∠AFC.提示:如图1,过E作EG∥AB.由AB∥CD知EG∥CD.有∠AEG=∠BAE=4∠1,∠GEC=∠DCE=4∠2.即∠AEC=4(∠1+∠2),同理∠AFC=∠BAF+∠DCF=3(∠1+∠2).图1图24.15°.提示:如图2,(方法之一)因为∠AFE=∠B=90°,∠EFC=60°,所以∠AFD=180°-∠AFB-∠EFC=30°.由矩形的角是直角,知CD∥AB,故∠BAF=∠AFD=30°,由折叠知∠BAE=∠FAE,故∠BAE=15°.5.将“平面上n(n≥2)条直线两两相交”的各种可能通过平移变为一种情况:在平面上任取一点O,将这n条直线均平行移动为通…  相似文献   

14.
下面是初一遇到的一例折纸问题,运用数学变换思想,通过翻折的程度、角度和位置的不同铺展开来,开阔思维.例题如图1,把长方形纸条ABCD的顶点D折叠到边BC图1上,探索图1中∠1与∠2的关系.解因为纸条ABCD是长方形,所以AD∥BD′,∠1=∠D′ED.折叠后得D′E∥C′F,∠D′E F=∠FED,所以∠2+∠D′EF=180°,即2∠2+2∠D′EF=360°,所以2∠2+∠D′ED=360°,所以∠1+2∠2=360°.假如上题作如下折叠变化:将长方形纸条ABCD翻折如图2,探索图2中∠1与∠2的关系,是否还有上述结论呢?图3分析通过观察发现,图3中∠2比图2中∠2正好少了90°,可…  相似文献   

15.
题目1:已知,如图1,在矩形 ABCD 中,点E,F 分别在 BC、CD 上,且 CE=AB,CF=BE求证:AE⊥EF.证明:由条件可得△ABE≌△ECF,所以∠1=∠2,又∠B ∠1 ∠3=180°,∠AEF ∠3 ∠2=180°,所以∠AEF=∠B=∠C=90°,所以 AE⊥EF.  相似文献   

16.
小马做几何     
有人说,数学的殿堂庄严神圣.你不把它当回事,它也会不把你当回事.一次,老师给小马做了以下几道几何题:第1道,△ABC的边BC上的高AD为5cm,又BD=2cm,DC=4cm,求△ABC的面积.小马画出了左图后答:S△ABC=12AD·BC=21AD(BD+DC)=21·5(2+4)=15(cm2).第2道,请设计一种方案求出△ABC三内角之和.小马在△ABC的边BC上取了一点D(如图),连接AD,于是他写道:设三角形的三内角之和为x,则∠1+∠3+∠B=x,∠2+∠4+∠C=x.那么∠1+∠2+∠3+∠4+∠B+∠C=2x.即x+(∠3+∠4)=2x.x+180°=2x`,x=180°.第3道,BE、CF分别是△ABC的高,已知∠A=α,BC=…  相似文献   

17.
一种纯几何证明方法。证明过程如下: 设△ABC中各边BC,AC和AB的长分别是a、b和c,o为内切圆之圆心,D,E,F均为切点,在BC的延长线上截取CH=AF,连BO,作OK⊥BO交BC于L点,又作CK⊥BC交OK于K点,连BK,因∠BOK=∠BCK=Rt∠,故B,K,C,O四点共圆,连CO则,∠COB+∠BKC=180°,又因∠1+∠2+∠3=90°,∠3+∠AOF=90°,所以∠1+∠2=∠AOF,∠COB+∠AOF=180°,于是  相似文献   

18.
例1 如图1,AB=AC,∠C=2∠A,BD是AC边上的高,求∠DBC的度数. 解:因为AB=AC, 所以∠ABC=∠C, 设∠A=x,则∠ABC=∠C=2x. 由三角形内角和定理: x+2x+2x=180. 解得x=36°,  相似文献   

19.
例1如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变郾请试着找一找这个规律,你发现的规律是()郾(A)∠A=∠1+∠2(B)2∠A=∠1+∠2(C)3∠A=∠1+∠2摇摇(D)3∠A=2(∠1+∠2)(2003年北京市海淀区中考题)解延长BE、CD交于A',则∠A'=∠A郾在四边形ADA'E中,∠A+∠ADA'+∠A'+∠A'EA=360°.又∠2+∠ADA'=180°,∠A'EA+∠1=180°,∴∠2+∠ADA'+∠A'EA+∠1=360°郾∴∠A+∠A'=∠1+∠2,即摇2∠A=∠1+∠2郾故选(B)郾评析将任意三角形纸片轻轻一折,却折出了相关角与角之间的规律郾…  相似文献   

20.
不少几何题,可由题设及图形特征,通过边计算边推理进行证明。这是几何证明中常常采用的一种证题方法。 例1 已知:如图1,在△ABC中,∠C=90°,D和E是斜边AB上的点,且AD=AC,BE=BC。求证:∠ECD=45°。证明 ∵ AD=AC,BE=BC。 ∴ ∠1+∠2=∠4=∠3+∠B,① ∠1+∠3=∠5=∠2+∠A,②  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号