首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设P为正n边形A_1A_2…A_n外接圆上任意一点,R为这正n边形外接圆半径,则P到各顶点距离平方和为定值2nR~2,即 sum from i=1 to n PA_i~2=2nR~2 (1) 本文试对这一有趣的定值问题作适当引伸,得到一些更一般的结论。定理1 设正n边形A_1A_2…A_n的中心为O,半径为R,P是以O为圆心以r为半径的圆  相似文献   

2.
命题1 正n边形的各顶点到其外接圆 任一切线的距离平方之和为一定值,且等于圆半径平方的[(3/2)π]倍。 可建立如图所示的坐标系用解析法证之(略)。 命题2 正四面体各顶点到其外接球上的任意一点的距离的平方和为一定值,  相似文献   

3.
本刊1987年第3期上《正n边形的一个有趣性质》一文,对正n边形进行了探讨,得出了当n为3k、4k、5k,k∈Z时,正n边形A_1A_2…A_n外接圆劣弧(?)上任一点P,到各顶点距离的关系式。至于n为3k、4k、5k以外的自然数时,P到各顶点距离的关系式又如何?该文尚未得出。正因为这样,该文最后指出:“目前还不能找一个统一的式子,表  相似文献   

4.
P为正n边形外接圆上任意一点,那么点P与正n边形各个顶点连线的线段的平方和为2nR~2(R为正n边形外接圆的半径) 为了证明这个性质,首先证明两个三角恒等式  相似文献   

5.
以△ABC外心O为原点建立坐标系,R为外接圆半径,则顶点坐标可设为 A(Rcosα,Rsinα), B(Rcosβ,Rsinβ), C(Rcosγ,Rsinγ). 设H(k,l)为△ABC垂心,则可以证明例1.(欧拉定理)试证△ABC的外心O、垂心G和垂心H共线.  相似文献   

6.
定理经过正n边形(n>3)每一顶点的对角线长L_i=2Rsin i·180°/n,i=1,2,3,…,n-1(包括连结相邻顶点的线段)。证明:正n边形A_1A_2A_3…A_n如图1所示,设半径为R,L_1=A_1A_2=2R sin180°/n; △A_1A_2A_3中,由正弦定理得A_1A_3/sinA_2  相似文献   

7.
求和:有趣得很,上述各题的答案都是“1/2”。 =sin((2nπ)/(2n 1))/2sin(π/(2n 1))=1/2。现给出上述一类余弦求和题的几何解法。设正2n 1边形A_1A_2……A_(2n 1)(n≥2)的边长为ω,延长A_(n 1)A_n,A_nA_(n-1),……A_3A_2与A_(2n 1)A_1的延长线相交,设A_(n 1)A_2,A_nA_(n-1),……A_3A_2,A_2A_1与A_1A_(2n 1)的夹角依次为θ_1,θ_2……θ_n。则由θ_n=∠A_2A_1A_(2n 1)=((2n 1)-2)/(2n 1)·π=(2n-1)/(2n 1)π,易得。  相似文献   

8.
从正方形ABCD的顶点A任引两条射线,使其夹角为45°,分别与BC、CD交于点E、F.与BD分别交于点P、Q.求证:S_△AEF=2S△apq.这是1990年四川省的一道高中数学竞赛题,现在我们进一步推广便有:定理如图正n(n=2p,P≥1)边形A_lA_2…A_(n-1)A_n中,A_1A_k为其外接圆直径,若A_(k-1)A_k,A_kA_(k 1)上各有一点E、F,且边形中心O而垂直于A_1A_k的直线交A_1E于P,A_1F于Q,则有.证作出正n边形的外接圆O,设其半径在Rt△A_1OP中,A_1_P=r·seca1,同理A_1Q=r·seca_2在Rt△A_lA_(k 1)F中,A_1F=(下转第32页)(上接第…  相似文献   

9.
设椭圆的参数方程为 0≤t≤2π。a>b>0。(1)又设A_1A_2…A_n为(1)的内接n边形,其中顶点A_1的坐标为A_i(acost_i,bsint_i),i=1,2,…n,其中t_1任意,t_2=t_1+(2π/n),t_3=t_2+(2π/n),…,t_(n+1)=t_n+(2π/n)(t_(n+1)=t_1+2π)。  相似文献   

10.
文给出了矩形外接圆周上点的两个有趣性质: (1)矩形外接圆周上任一点到各顶点距离的平方和为8R~2; (2)矩形外接圆周上任一点到各边中点距离的平方和为6R~2(R为外接圆的半径)。 本文将这两个结论由平面推广到空间,  相似文献   

11.
1987年上海市中学生数学竞赛中有这样一道试题:[1] 正七边形A_1A_2A_3A_4A_5A_6A_7,内接于单位圆⊙O中,P在OA_1的延长线上,且|OP|=2,则|PA_1|·|PA_2|…|PA_7|等于多少? 下面我们把这道富于思考性的试题推广成: 定理设正n边形A_1A_2A_3…A_n内接于圆x~2+y~2=R~2,P(rcosθ,rsinθ)为平面上任意一点,则|PA_2|·|PA_2|·…·|PA_n|=(r~(2n)-2r~nR~ncosnθ+R~(2n))~(1/2)。  相似文献   

12.
第16届加拿大数学奥林匹克竞赛试题第4题:一个锐角三角形的面积为1,证明在三角形内有一点到每个顶点的距离至少为(16/27)~4。 本文将作如下推广: 命题1 一个圆内接n边形的面积为1,若,此n边形的几个顶点不是同时分布在该外接圆的半个圆周上,则在该n边形内存在一点,它到每个顶点的距离至少为[2/nsin(2π/n)]~(1/2)  相似文献   

13.
定理 P是凸n边形A_1A_2…A_n内一点,记∠PA_iA_(i 1)=α_i,i=1,…,n(A_(n-1)≡A_1),则 sum from i=1 to n(ctgα_i)≥sum from i=1 to n(ctgA_i ncsc(2π/n))。 (1) 证明 由正弦定理,得  相似文献   

14.
我们先来看新教材高中数学第一册(下)P47的练习4:把一段半径是R的圆木锯成横截面是矩形的木料,怎样锯法使得横截面的面积最大?分析:根据对称性,内接矩形的对角线交点是圆心,设∠BAC=θ(0<θ<2π),则由AC=2R,得AB=2Rcosθ,BC=2Rsinθ,矩形面积S=AB·BC=2Rsinθ·2Rcosθ=2R2sin2θ,由0<θ<2π∴0<2θ<π∴sin2θ=1时,即2θ=2π,θ=4π时,Smax=2R2·这里我们用的是参数法建立函数关系,用三角函数的有界性来进行求解最值,现在把问题推广如下:设扇形的圆心角是α,半径是R·1·当α=π即扇形是半圆时如图,OA=Rcosθ,AB=Rsinθ,则S=…  相似文献   

15.
正本文约定:若凸n边形的n边(或延长线)均与圆锥曲线相切,则称此凸n边形为圆锥曲线的外切凸n边形.笔者最近探究发现圆锥曲线外切凸n边形的一个性质,现将结果陈述如下,供大家参考.命题1若三角形△A_1A_2A_3的三边A_1A_2、A_2A_3、A_3A_1(或其延长线),与圆锥曲线Γ分别相切于点T_1、T_2、T_3,则A_1T_1/T_1A_2·A_2T_2/T_2A_2·A_3T_3/T_3A_1=1.证明:(1)当Γ为椭圆时,如图1,设其标准方程为x~2/a~2+y~2/b~2=1(ab0),T_i(acosθ_i,nsinθ_i),其中θ_i-θ_i≠kπ,(i≠j,i,j=1,2,3),  相似文献   

16.
文[1]将欧拉(Ewler)不等式向双圆n边形(既有外接圆又有内切圆的凸n边形)推广,得到:Rcos≥r(1)近期,文[2]和[3]从“长度”出发,分别给出了不等式(1)的加强形式.本文拟建立它的一种新的面积隔离,即有定理设双圆n边形的面积、外接圆半径、内切圆半径分别为S、R、r,则当且仅当n边形是正n边形时不等式(2取)等号.证如图1,I为双圆n边形A_1A_2…A_n的内切圆圆心,令A_iA(i+1)之长为a_i(i=1,2,……,n;A_(n l)≡A_1).考虑到y=ctgx在(0,)上是下凸函数,且,从而由下凸函数的琴生不等式得:因此,有:下面分几种情形来证…  相似文献   

17.
用正多边形瓷砖铺地,讨论其实现的可能性是颇有趣味的问题.假定各顶点处正多边形的配置是一样的,且不允许正多边形的顶点放在另一正多边形的边上,在上述假定下,本文给出瓷砖铺地的所有可能解. 一、用一种正多边形铺地正n边形的内角为n-2/n·180°,所以正n边形若能铺满平而,必须有正整数k满足 n-2/n·180°×k=360°。从而 k=2n/n-2=2 4/n-2故必须 n-2|4,n只能取3、4、6. 另一方面,易知正三角形、正方形、正六边形是能铺满平面的(具图1、图2、图3).  相似文献   

18.
定理 中心在极点O,一顶点为A_0(R,0),且边幅为c的正n角星的方程为其中c∈N,n≥2c 1,R∈R~ ,θ∈[0,2π). 证明:如图,O为正n角星A_0A_1…A_(2n-1)  相似文献   

19.
对于平面几何中著名的Menelaus定理,文[1]曾将它推广到多边形,得到 定理 设n边形A_1A_2A_3…A_n的n条边A_1A_2、A_2A_3、…、A_(n-1)A_n、A_nA_1所在的直线都与直线l相交,交点分别为P_1、P_2、…、P_n(它们都不是已知n边形的顶点),则  相似文献   

20.
问题设A_1A_2…A_n是平面n边形。如果它的内角∠A_1,…,∠A_n都相等,且A_1A_2,A_2A_3,…,A_(n-1)A_n,A_nA_1成等比数列,试证它是正n边形。当n=3时此问题是容易解决的,但对于一般情况却并不是很容易的,本文将用复数方法来证明。先证明以下结论。定理设A_1A_2…A_n是复平面内的n边形。z_1,z_2,…,z_n是顶点A_1,A_2,…,A_n对应的复数。则A_1A_2…A_n是正n边形当且仅当下式成立:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号