首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Using a nonlinear complete order model of a synchronous motor, a robust second order sliding mode observer based control scheme is proposed. For that, a generalized super-twisting 3rd order observer is proposed for nonlinear systems. Based on the proposed observer scheme, a robust rotor flux observer is designed, then, a stator current observer is proposed using a classical super-twisting algorithm for extracting information of the rotor speed by means of the equivalent control method. The control design for the output tracking of a desired reference signal for the rotor speed is carried out with a classical super-twisting sliding mode algorithm and adaptive backstepping techniques. Due to the number of inputs, the flux in the excitation winding, and the direct component of the stator currents are also regulated. Numeric simulations predict a good performance of the closed-loop synchronous motor with parameter variations.  相似文献   

2.
In determining flight controls for launch vehicle systems, several uncertain factors must be taken into account, including a variety of payloads, a wide range of flight conditions and different mission profiles, wind disturbances and plant uncertainties. Crewed vehicles must adhere to human rating requirements, which limit the angular rates. Sliding mode control algorithms that are inherently robust to external disturbances and plant uncertainties are very good candidates for improving the robustness and accuracy of the flight control systems. Recently emerging Higher Order Sliding Mode (HOSM) control is even more powerful than the classical Sliding Mode Controls (SMC), including the capability to handle systems with arbitrary relative degree. This paper proposes sliding mode launch vehicle flight controls using classical SMC driven by the sliding mode disturbance observer (SMDO) and higher-order multiple and single loop designs. A case study on the SLV-X Launch Vehicle studied under a joint DARPA/Air Force program called the Force Application and Launch from CONtinental United States (FALCON) program is shown. The intensive simulations demonstrate efficacy of the proposed HOSM and SMC-SMDO control algorithms for launch vehicle attitude control.  相似文献   

3.
In this paper a sliding mode position control for high-performance real-time applications of induction motors is developed. The design also incorporates a sliding mode rotor flux estimator in order to avoid the flux sensors. The proposed control scheme presents a low computational cost and therefore can be implemented easily in a real-time applications using a low cost Digital Signal Processor (DSP). The stability analysis of the observer and the controller, under parameter uncertainties and load torque disturbances, is provided using the Lyapunov stability theory. Finally simulated and experimental results show that the proposed controller with the proposed observer provides a good trajectory tracking and that this scheme is robust with respect to plant parameter variations and external load disturbances.  相似文献   

4.
In this paper, a sensorless speed control for interior permanent magnet synchronous motors (IPMSM) is designed by combining a robust backstepping controller with integral actions and an adaptive interconnected observer. The IPMSM control design generally requires rotor position measurement. Then, to eliminate this sensor, an adaptive interconnected observer is designed to estimate the rotor position and the speed. Moreover, a robust nonlinear control based on the backstepping algorithm is designed where an integral action is introduced in order to improve the robust properties of the controller. The stability of the closed-loop system with the observer–controller scheme is analyzed and sufficient conditions are given to prove the practical stability. Simulation results are shown to illustrate the performance of the proposed scheme under parametric uncertainties and low speed. Furthermore, the proposed integral backstepping control is compared with the classical backstepping controller.  相似文献   

5.
In order to improve the anti-disturbance performance of a bearingless induction motor (BIM) control system, a fractional-order sliding mode control (FOSMC) strategy based on improved load torque observer is proposed on the basis of the sliding mode speed regulation system. Using the information memory and genetic characteristics of the fractional calculus operator, the fractional integral term of the speed error is introduced in the design of the traditional sliding surface, which reduces the influence of disturbance on the speed regulation system. The fractional-order sliding mode control law is derived based on the BIM mathematical model, and the stability of the control law is proved by Lyapunov theorem. An improved observer is constructed based on the BIM state equations, and the real-time observed load torque is introduced into the fractional-order sliding mode controller. To improve the observer's convergence speed, the proportional integral form is used to replace the integral form in the traditional reduced order load observer. And the state error feedback coefficients of the improved load observer are calculated. Both simulation and experimental results verified the effectiveness of the proposed control strategy.  相似文献   

6.
Mismatched uncertainty and chattering appear as two challenges in sliding mode control. To overcome the problem of mismatched uncertainty, multiple sliding surfaces with virtual inputs are proposed. Accordingly, we have proposed two new methods based on designed neural observer: sliding mode control (SMC) and dynamic sliding mode control (DSMC) methods. Although, the proposed SMC can significantly cope with the mismatched uncertainties, but it suffers from chattering phenomenon. The chattering problem can be removed in DSMC, because an integrator is placed before the system. This results in increased number of the system states. This new state can be identified with the proposed neural observer. Note that in both proposed approaches, the robust performance (invariance property) of system is reserved, even in the presence of mismatch uncertainties. Then, to have a valid comparison the proposed DSMC is also designed using loop transfer recovery observer (LTRO). This comparison shows the good performance of the DSMC based neural networks. Moreover, the upper bound of uncertainties is not used in SMC and DSMC controllers and also in the neural observer and LTRO, which is important in practical implementation. Finally, comparing the equations, one can see the simplicity of DSMC in concept and also in realization.  相似文献   

7.
Integrated guidance and control (IGC) approaches exploit the synergy between guidance and control designs. This study focuses on the integrated guidance and control (autopilot) design for a chasing Uninhabited Aerial Vehicle (UAV) against a target aircraft. A second-order sliding structure with a second-order sliding mode (SOSM) including a high-order sliding mode (HOSM) observer for the estimation of the uncertain sliding surfaces is selected to develop an integrated guidance and autopilot scheme. In order to make the design synthesis easier, intermediate control variables for partial derivatives of a sliding surface are carefully selected. The resulting sliding surface structure is simple and sufficient to relate the actuator input to the sliding surface. The potential of the proposed method is demonstrated through an aircraft application by comparing its simulation performance, number of tuning parameters used, and information needed for its implementation with an approach where the guidance law and the controller are designed separately.  相似文献   

8.
In this paper, the observer-based sliding mode control (SMC) problem is investigated for a class of uncertain nonlinear neutral delay systems. A new robust stability condition is proposed first for the sliding mode dynamics, then a sliding mode observer is designed, based on which an observer-based controller is synthesized by using the SMC theory combined with the reaching law technique. Then, a sufficient condition of the asymptotic stability is proposed in terms of linear matrix inequality (LMI) for the overall closed-loop system composed of the observer dynamics and the state estimation error dynamics. Furthermore, the reachability problem is also discussed. It is shown that the proposed SMC scheme guarantees the reachability of the sliding surfaces defined in both the state estimate space and the state estimation error space, respectively. Finally, a numerical example is given to illustrate the feasibility of the proposed design scheme.  相似文献   

9.
The recent transition in power generation and consumption is based on the integration of renewable energy sources using DC microgrids. To facilitate this integration, a multi-source DC microgrid structure with wind, photovoltaics, fuel cell and hybrid energy storage system including battery and supercapacitor is presented in this paper. These sources are linked to a DC-bus via DC-DC converters. A hierarchical control strategy with a device and a system-level control for coordinated control between energy sources and their storage devices is proposed. In the device-level control, a variable structure based sliding mode control is applied to regulate the DC bus voltage and to ensure global asymptotic stability. Whereas, the system-level control compensates for the supply and demand mismatches by using a rule-based fuzzy system. To verify the effectiveness of the proposed scheme and the superiority of one controller over another, the proposed controllers are simulated and compared in the MATLAB/Simulink environment under varying load and weather data conditions. Results show that super twisting sliding mode control had negligible chattering as well as better convergence as compared to controllers. Furthermore, the efficiency of the developed scheme is validated by controller hardware in loop experiments.  相似文献   

10.
This paper presents the design of a controller based on the block control technique combined with the super twisting control algorithm for trajectory tracking of a quadrotor helicopter. A first order exact differentiator is used in order to estimate the virtual control inputs, which simplifies the control law design. In addition, the wind parameter resulting from the aerodynamic forces is also estimated in order to ensure robustness against these unmatched perturbations. The stability and finite time convergence of the exact differentiator have been recently proved by means of Lyapunov functions, and therefore the stability analysis of the proposed controller has been carried out along the same lines. The performance and effectiveness of the proposed controller are tested in a simulation study taking into account external disturbances.  相似文献   

11.
This paper proposes a data-driven terminal sliding mode decoupling controller with prescribed performance for a class of discrete-time multi-input multi-output systems in the presence of external disturbances and uncertainties. First, utilizing a discrete-time extended state observer and a compact form dynamic linearization data model, we derive a new data-driven mothod and establish the relationship between the input and output signals of controlled plant. Moreover, the disturbances, uncertainties, and couplings are suppressed owing to the application of the terminal sliding mode technique. Combined with the principle of prescribed performance control, the terminal sliding mode law with prescribed performance is derived. With the proposed data-driven method, the tracking error is lower, and the decoupling ability is improved. Furthermore, the stability of the control system is proven. Finally, a simulation is conducted on a three-tank system to demonstrate the effectiveness of the proposed scheme.  相似文献   

12.
In this work, we developed a novel active fault-tolerant control (FTC) design scheme for a class of nonlinear dynamic systems subjected simultaneously to modelling imperfections, parametric uncertainties and sensor faults. Modelling imperfections and parametric uncertainties are dealt with using an adaptive radial basis function neural network (RBFNN) that estimates the uncertain part of the system dynamics. For sensor fault estimation (FE), a nonlinear observer based on the estimated dynamics is designed. A scheme to estimate sensor faults in real-time using the nonlinear observer and an additional RBFNN is developed. The convergence properties of the RBFNN, used in the fault FE part, are improved by using a sliding surface function. For FTC design, a sliding surface is designed that incorporates the real-time sensor FE. The resulting sliding mode control (SMC) technique-based FTC law uses the estimated dynamics and real-time sensor FE. A double power-reaching law is adopted to design the switching part of the control law to improve the convergence and mitigate the chattering associated with the SMC. The FTC works well in the presence and absence of sensor faults without the requirement for controller reconfiguration. The stability of the proposed active FTC law is proved using the Lyapunov method. The developed scheme is implemented on a nonlinear simulation of an unmanned aerial vehicle (UAV). The results show good performance of the proposed unified FE and the FTC framework.  相似文献   

13.
《Journal of The Franklin Institute》2022,359(18):10331-10354
Industrial telerobotics system (ITS) enables robots to implement remote, dangerous, and complicated manufacturing tasks by incorporating human intelligence. Higher requirements are put forward for the working speed and performance of ITS. However, for ITS, only asymptotic convergence can be realized by existing control strategies, which have poor robust performance. In view of these theoretical and practical problems, this article addresses fixed-time synchronization control issue for a class of ITS with unknown parametric/nonparametric uncertainties and external disturbances. Satisfactory force and position performance can be achieved with the designed novel control algorithms. Firstly, based on the impedance control frame, two reference models are constructed for the master and slave robots by considering force and position signals transmission between master and slave, respectively. Then, a new adaptive sliding mode disturbance observer (ASMDO) is developed to realize the estimation of external disturbances and system uncertainties in higher speed and higher precision under relaxed assumption. Moreover, a novel continuous fixed-time control (CFTC) scheme is developed to guarantee good position and force synchronization performances, simultaneously. Finally, the effectiveness of the suggested control method is validated with simulations and experimental results.  相似文献   

14.
This paper studies the robust stochastic stabilization problem for a class of fuzzy Markovian jump systems with time-varying delay and external disturbances via sliding mode control scheme. Based on the equivalent-input-disturbance (EID) approach, an online disturbance estimator is implemented to reject the unknown disturbance effect on the considered system. Specifically, to obtain exact EID estimation Luenberger fuzzy state observer and a low-pass filter incorporated to the closed-loop system. Moreover, novel fuzzy EID-based sliding mode control law is constructed to ensure the stability of the closed-loop system with satisfactory disturbance rejection performance. By employing Lyapunov stability theory and some integral inequalities, a new set of delay-dependent robust stability conditions is derived in terms of linear matrix inequalities (LMIs). The resulting LMI is used to find the gains of the state-feedback controller and the state observer a for the resulting closed-loop system. At last, numerical simulations based on the single-link arm robot model are provided to illustrate the proposed design technique.  相似文献   

15.
The problem of the robust tracking and model following for a class of linear systems with time-varying parameter uncertainties, multiple delayed state perturbations and external disturbance is investigated in this paper. The algorithm is based on the adaptive sliding mode control. The proposed method does not need a priori knowledge of upper bounds on the norm of the uncertainties, but estimates them by using the adaptation technique so that the reaching condition can be satisfied. This scheme guarantees the closed-loop system stability and zero-tracking error in the presence of time-varying parameter uncertainties, multiple delayed state perturbations and external disturbance. Finally, simulation results demonstrate the efficacy of the proposed control methodology.  相似文献   

16.
In this work, considering the roll dynamics and actuator dynamics, an observer-based control scheme for a vehicle is proposed. The proposal considers a nonlinear higher order sliding mode observer to estimate unmeasurable lateral velocity, roll angle and roll velocity. Using the observer information, a controller based on block control with sliding mode technique is designed for the reference trajectory tracking of the lateral and yaw velocities of the vehicle. The stability of the complete closed-loop system including zero dynamics is analyzed. The effectiveness of the proposed scheme is demonstrated through CarSim simulations.  相似文献   

17.
This paper investigates an observer-based sliding mode control (SMC)) for connected vehicles under denial-of-service attacks. The attacks refer to interrupting communication channels between vehicles. Firstly, a reduced order observer is used to estimate the relative acceleration between neighbor vehicles, and a switching communication topology is introduced to model the attack. Then, an observer based sliding mode controller is proposed to achieve desired stability performance. Moreover, a quadratic cost performance is also defined and the cost upper bound is proved. Some sufficient conditions are provided such that the connected vehicles can achieve robust tracking performance, and input-to-state string stability is guaranteed under zero initial errors. Finally, numerical simulations are given to illustrate the validity of the designed controller.  相似文献   

18.
An Antilock Braking System (ABS) is characterized by nonlinear dynamics, which render more difficult the design of a controller for high performance. The problem is even harder due to the uncertainties on the parameters appearing in its dynamics. In this paper, an ABS laboratory setup is considered, which mimics a quarter car model. A super–twisting controller is proposed to overcome the problem due to parameter uncertainties. This controller is designed in order to impose a reference value of the tire slip. Two cases are considered: in the first, nominal ABS parameters are used in the controller, whereas in the second the controller embeds an estimator of the tire–road friction coefficient, which is one of most critical parameters. The friction coefficient is estimated in finite–time by means of a high–order sliding mode differentiator. The original contributions of the paper are the real–time implementation of the super–twisting controller for the laboratory setup under study, and the use of a super–twisting estimator to provide a finite–time estimation of the friction coefficient between the tire and the road, along with a comparison with classical PI–like and super–twisting controllers, available in the literature. The ABS laboratory setup allows checking experimentally the performance of the proposed nonlinear dynamic controller, showing a considerable increase of the efficiency of the control system.  相似文献   

19.
This paper studies the problem of observer based fast nonsingular terminal sliding mode control schemes for nonlinear non-affine systems with actuator faults, unknown states, and external disturbances. A hyperbolic tangent function based extended state observer is considered to estimate unknown states, which enhances robustness by estimating external disturbance. Then, Taylor series expansion is employed for the non-affine nonlinear system with actuator faults, which transforms it to an affine form system to simplify disturbance observer and controller design. A finite time disturbance observer is designed to address unknown compound disturbances, which includes external disturbances and system uncertainties. A fast nonsingular terminal sliding mode with exponential function sliding mode is proposed to address output tracking. Simulation results show the proposed scheme is effective.  相似文献   

20.
A continuous multivariable uniform finite-time output feedback reentry attitude control scheme is developed for Reusable Launch Vehicle (RLV) with both matched and mismatched disturbances. A novel finite-time controller is derived using the bi-limit homogeneous technique, which ensures that the attitude tracking can be achieved in a uniformly bounded convergence time from any initial states. A multivariable uniform finite-time observer is designed based on an arbitrary order robust sliding mode differentiator to estimate the unknown states and the external disturbances, simultaneously. Then, an output feedback control scheme is established through the combination of the developed controller and the observer. A rigorous proof of the uniform finite-time stability of the closed-loop system is presented using Lyapunov and homogeneous techniques. Finally, numerical simulation is provided to demonstrate the efficiency of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号