首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a robust adaptive control strategy for a class of state-constrained uncertain nonlinear systems with prescribed transient and steady-state behavior. The prescribed tracking performance can be characterized by constraints on an output tracking error. Both state and output constraints are achieved by bounding integral barrier Lyapunov functions in the backstepping procedure. A robust adaptive term is designed to compress auxiliary system uncertainties without the knowledge of their bounds. The satisfaction of control constraints and tracking error convergence are verified by theoretical analysis and are illustrated by simulation results.  相似文献   

2.
In this paper, a novel approach for the design of an indirect adaptive fuzzy output tracking excitation control of power system generators is proposed. The method is developed based on the concept of differentially flat systems through which the nonlinear system can be written in canonical form. The flatness-based adaptive fuzzy control methodology is used to design the excitation control signal of a single machine power system in order to track a reference trajectory for the generator angle. The considered power system can be written in the canonical form and the resulting excitation control signal is shown to be nonlinear. In case of unknown power system parameters due to abnormalities, the nonlinear functions appearing in the control signal are approximated using adaptive fuzzy systems. Simulation results show that the proposed controller can enhance the transient stability of the power system under a three-phase to ground fault occurring near the generator terminals.  相似文献   

3.
This paper addresses the adaptive fuzzy event-triggered control (ETC) problem for a class of nonlinear uncertain systems with unknown nonlinear functions. A novel ETC approach that exhibits a combinational triggering (CT) behavior is proposed to update the controller and fuzzy weight vectors, achieving the non-periodic control input signals for nonlinear systems. A CT-based fuzzy adaptive observer is firstly constructed to estimate the unmeasurable states. Based on this, an output feedback ETC is proposed following the backstepping and error transformation methods, which ensures the prescribed dynamic tracking (PDT) performance. The PDT performance indicates that the transient bounds, over-shooting and ultimate values of tracking errors are fully determined by the control parameters and functions chosen by users. The closed-loop stability is guaranteed under the framework of impulsive dynamic system. Besides, the Zeno phenomenon is circumvented. The theoretical analysis indicates that the proposed scheme guarantees control performance while considerably reducing the communication resource utilization and controller updating frequency. Finally, the numerical simulations are conducted to verify the theoretical findings.  相似文献   

4.
In this paper, an adaptive finite-time funnel control for non-affine strict-feedback nonlinear systems preceded by unknown non-smooth input nonlinearities is proposed. The input nonlinearities include backlash-like hysteresis and dead-zone. Unknown nonlinear functions are handled using fuzzy logic systems (FLS), based on the universal approximation theorem. An improved funnel error surface is utilized to guarantee the steady-state and transient predetermined performances while the differentiability problem in the controller design is averted. Using the Lyapunov approach, all the adaptive laws are extracted. In addition, an adaptive continuous robust term is added to the control input to relax the assumption of knowing the bounds of uncertainties. All the signals in the closed-loop system are shown to be semi-globally practically finite-time bounded with predetermined performance for output tracking error. Finally, comparative numerical and practical examples are provided to authenticate the efficacy and applicability of the proposed scheme.  相似文献   

5.
In this paper, an adaptive output feedback fault tolerant control (FTC) based on actuator switching is proposed for a class of single-input single-output (SISO) nonlinear systems with uncertain parameters and possible actuator failures, for which a set of healthy actuators are available as backups. While high-gain K-filters are utilized to estimate the unmeasured states, an adaptive control law is designed to compensate for the parameter uncertainties and certain actuator failures, an actuator switching strategy based on a set of appropriately designed monitoring functions (MFs) is proposed to tackle those serious actuator failures, make tracking error satisfy prescribed transient and steady-state performance and guarantee closed-loop signal boundedness.  相似文献   

6.
This paper is concerned with the problem of global asymptotical tracking of single-input single-output (SISO) nonlinear time-delay control systems. Based on the input-output feedback linearization technique and Lyapunov method for nonlinear state feedback synthesis, a robust globally asymptotical output tracking controller design methodology for a broad class of nonlinear time-delay control systems is developed. The underlying theoretical approaches are the differential geometry approach and the composite Lyapunov approach. One utilizes the parameterized co-ordinate transformation to transform the original nonlinear system into singularly perturbed model and the composite Lyapunov approach is then applied for output tracking. For the view of practical application, the proposed control methodology has been successfully applied to the famous nonlinear automobile idle-speed control system.  相似文献   

7.
In this study, the problem of observer-based control for a class of nonlinear systems using Takagi-Sugeno (T-S) fuzzy models is investigated. The observer-based model predictive event-triggered fuzzy reset controller is constructed by a T-S fuzzy state observer, an event-triggered fuzzy reset controller, and a model predictive mechanism. First, the proposed controller utilizes the T-S fuzzy model and is constructed based on state observations and discrete sampling output, which can greatly reduce the occupation of communication resources. Then, the model predictive strategy for reset law design is designed in this paper. With a reasonable reset of the controller state at certain instants, the performance of the reset control systems is improved. Finally, the validity of the proposed method is illustrated by simulation. The merits of the proposed controller in improving transient performance and reducing the communication occupation are demonstrated by comparing its results with the output feedback fuzzy controller and the first-order fuzzy reset controller.  相似文献   

8.
This work studies the advantageous features of the fluid inerter device for optimised structural control of buildings. Experimental data are first presented to characterise the fluid inerter dynamics, and validate the simplified analytical formulations. Building on these observations, the device is modelled as an inerter in parallel with a nonlinear dashpot representing a power law damping term. The latter dissipative effects are mainly induced by the pressure drops occurring in helical channels due to the fluid viscosity and density. Then, novel passive vibration control schemes are implemented for the earthquake protection of base-isolated buildings by combining the fluid inerter with a tuned mass damper system. To account for the uncertain nature of the earthquake input, the base acceleration is modelled as a Kanai–Tajimi filtered stationary random process. The optimal fluid inerter parameters, namely inertance and damping, are identified numerically by minimising stochastic performance indices relevant to displacement, acceleration, and energy-based measures of the structural response. The nonlinear damping behaviour of the fluid inerter is fully incorporated in the optimal design procedure via the statistical linearisation technique. Nonlinear response history analysis under an ensemble of 44 natural earthquake ground motions is carried out to assess the seismic performance of the system. Since inertance and damping are coupled characteristics in a real fluid inerter, design guidelines are finally outlined to determine the actual geometrical and mechanical properties of the device to achieve targeted parameters resulting from the optimisation procedure.  相似文献   

9.
This paper investigates the leader-following consensus problem of second-order nonlinear multi-agent systems with directed graph. A novel reset control approach is proposed for the aim of improving transient consensus performance, e.g., settling time. By introducing consensus error into reset conditions, the output of reset integrator will keep the same sign with the consensus error, thus, the desired states can be compensated preferentially and the system transient performance is improved accordingly. To appropriately describe the closed-loop system with reset-induced jump dynamics, a hybrid system model consisting of both flow dynamics and jump dynamics is constructed. Based on this model, and combined with backstepping method, Lyapunov-based consensus analysis is presented under hybrid system framework. Finally, a numerical example is provided to show the effectiveness of the obtained results.  相似文献   

10.
In practice, many controlled plants are equipped with MIMO non-affine nonlinear systems. The existing methods for tracking control of time-varying nonlinear systems mostly target the systems with special structures or focus only on the control based on neural networks which are unsuitable for real-time control due to their computation complexity. It is thus necessary to find a new approach to real-time tracking control of time-varying nonlinear systems. In this paper, a control scheme based on multi-dimensional Taylor network (MTN) is proposed to achieve the real-time output feedback tracking control of multi-input multi-output (MIMO) non-affine nonlinear time-varying discrete systems relative to the given reference signals with online training. A set of ideal output signals are selected by the given reference signals, the optimal control laws of the system relative to the selected ideal output signals are set by the minimum principle, and the corresponding optimal outputs are taken as the desired output signals. Then, the MTN controller (MTNC) is generated automatically to fit the optimal control laws, and the conjugate gradient (CG) method is employed to train the network parameters offline to obtain the initial parameters of MTNC for online learning. Addressing the time-varying characteristics of the system, the back-propagation (BP) algorithm is implemented to adjust the weight parameters of MTNC for its desired real-time output tracking control by the given reference signals, and the sufficient condition for the stability of the system is identified. Simulation results show that the proposed control scheme is effective and the actual output of the system tracks the given reference signals satisfactorily.  相似文献   

11.
This article studies adaptive prescribed performance tracking control problem for a class of strict-feedback nonlinear systems with parametric uncertainties and actuator failures. Firstly, in order to compensate the multiple uncertainties and eliminate the influence of actuator failure, a new adaptive tracking controller based on first-order filter technology will be proposed, which simplifies the algorithm design process. Then, by introducing an asymmetric state transition function, the transient and steady performances of the output tracking error are both constrained such that the predetermined performance control goal is achieved. Moreover, to reduce the communication burden from the controller to the actuator, the event-triggered mechanism is designed, and there will be no Zeno phenomenon. Based on Lyapunov stability theory, it is strictly proved that output signal can track the reference signal and all the signals of the closed-loop system are bounded. Finally, a simulation example is performed and the results demonstrate effectiveness of the proposed strategy.  相似文献   

12.
Decentralized adaptive neural backstepping control scheme is developed for uncertain high-order stochastic nonlinear systems with unknown interconnected nonlinearity and output constraints. For the control of high-order nonlinear interconnected systems, it is assumed that nonlinear system functions are unknown. It is for the first time to control stochastic nonlinear high-order systems with output constraints. Firstly, by constructing barrier Lyapunov functions, output constraints are handled. Secondly, at each recursive step, only one adaptive parameter is updated to overcome over-parameterization problems, and RBF neural networks are used to identify unknown nonlinear functions so that the difficulties caused by completely unknown system functions and stochastic disturbances are tackled. Finally, based on the Lyapunov stability method, the decentralized adaptive control scheme via neural networks approximator is proposed, ultimately reducing the number of learning parameters. It is shown that the designed controller can guarantee all the signals of the resulting closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB), and the tracking errors for each subsystem are driven to a small neighborhood of zero. The simulation studies are performed to verify the effectiveness of the proposed control strategy.  相似文献   

13.
The optimal location of a static synchronous compensator (STATCOM) and its coordinated design with power system stabilizers (PSSs) for power system stability improvement are presented in this paper. First, the location of STATCOM to improve transient stability is formulated as an optimization problem and particle swarm optimization (PSO) is employed to search for its optimal location. Then, coordinated design problem of STATCOM-based controller with multiple PSS is formulated as an optimization problem and optimal controller parameters are obtained using PSO. A two-area test system is used to show the effectiveness of the proposed approach for determining the optimal location and controller parameters for power system stability improvement. The nonlinear simulation results show that optimally located STATCOM improves the transient stability and coordinated design of STATCOM-based controller and PSSs improve greatly the system damping. Finally, the coordinated design problem is extended to a four-machine two-area system and the results show that the inter-area and local modes of oscillations are well damped with the proposed PSO-optimized controllers.  相似文献   

14.
This paper investigates the tracking control problem for output constrained stochastic nonlinear systems under quantized input. The main challenge of considering such dynamics lies in the fact that theirs have both input and output constraints, making the standard backstepping technique fail. To address this challenge, the introduction of nonlinear mapping transforms the constrained nonlinear systems into unconstrained nonlinear systems, which not only avoids the emergence of feasibility conditions but also simplifies the structure of designed controller. The obstacle caused by quantized input is successfully resolved by exploiting the decomposition of hysteresis quantizer. Additionally, the uncertain nonlinearities are approximated by fuzzy logic systems during the control design process. Under the proposed quantized tracking control scheme, the output tracking error converges to an arbitrarily small neighborhood of origin and all signals in the closed-loop system remain bounded in probability. Simultaneously, it can make sure that the output constraint isn’t violated. Ultimately, both a numerical example and a practical example are provided to clarify the effectiveness of the control strategy.  相似文献   

15.
This paper proposes an observer-based fuzzy adaptive output feedback control scheme for a class of uncertain single-input and single-output (SISO) nonlinear stochastic systems with quantized input signals and arbitrary switchings. The SISO system under consideration contains completely unknown nonlinear functions, unmeasured system states and quantized input signals quantized by a hysteretic quantizer. By adopting a new nonlinear disposal of the quantized input, the relationship between the control input and the quantized input is established. The hysteretic quantizer that we take can effectively avoid the chattering phenomena. Furthermore, the introduction of a linear observer makes the estimation of the states possible. Based on the universal approximation ability of the fuzzy logic systems (FLSs) and backstepping recursive design with the common stochastic Lyapunov function approach, a quantized output feedback control scheme is constructed, where the dynamic surface control (DSC) is explored to alleviate the computation burden. The proposed control scheme cannot only guarantee the boundedness of signals but also make the output of the system converge to a small neighborhood of the origin. The simulation results are exhibited to demonstrate the validity of the control scheme.  相似文献   

16.
The space debris removal system (SDRS) of tethered space tug is modelled as a cable dragged flexible spacecraft. The main goal of this paper is to develop a dynamic modeling approach for mode characteristics analysis and forced vibration analysis of the planar motion of a cable dragged flexible spacecraft. Solar arrays of the spacecraft are modelled as multi-beams connected by joints with additional rotating spring where the nonlinear stiffness, damping and friction are considered. Using the Global mode method (GMM), a novel analytical and low-dimensional nonlinear dynamic model is developed for vibration analysis of SDRS to enhance the design capacity for better fulfillment of space tasks. The linear and nonlinear partial differential equations that governing transverse vibration of solar arrays, transverse and longitudinal vibrations of cable are derived, along with the matching and boundary conditions. The natural frequencies and analytical global mode shapes of SDRS are determined, and orthogonality relations of the global mode shapes are established. Dynamical equations of the system are truncated to a set of ordinary differential equations with multiple-DOF. The validity of the method is verified by comparing the natural frequencies obtained from the characteristic equation with those obtained from FEM. Interesting mode localization and mode shift phenomena are observed in mode analysis. Dynamic responses of the system excitated by fluctuation of attitude control torque and short-time attitude control torque are worked out, respectively. Nonlinear behaviors are observed such as hardening, jump and super-harmonic resonances. Residual vibration of the overall system with considering the varous values of nonlinear stiffness, damping coefficient and friction coefficient has shown that the nonlinearity of joints has a great influence on the vibration of the overall system.  相似文献   

17.
Though traditional prescribed performance control (PPC) schemes can guarantee tracking errors with desired transient performance, they cannot ensure the convergence of tracking errors with small overshoot. In this study, we propose a novel PPC methodology for a class of uncertain nonlinear dynamic systems based on back-stepping, guaranteeing output tracking with small (even zero) overshoot. Firstly, new performance functions are constructed to constrain tracking errors. Then, to facilitate control designs, the “constrained” systems are transformed into equivalent “unconstrained” ones by designing a series of transformed errors. Furthermore, robust back-stepping controllers, requiring no priori knowledge of uncertainties’ upper bounds, are developed utilizing transformed errors instead of initial tracking errors. Semi-globally uniformly bounded stability of the closed-loop control system is guaranteed via Lyapunov synthesis. Finally, simulation and experiment results are presented to verify the design.  相似文献   

18.
This paper presents a numerical technique to determine the stability of a nonlinear feedback control system with a single nonlinear element in the feedback path. By expressing the output explicitly in terms of the input the bounded inputand bounded output stability criterion of the nonlinear system is investigated.  相似文献   

19.
This paper addresses the problem of adaptive fault estimation and fault-tolerant control for a class of nonlinear non-Gaussian stochastic systems subject to time-varying loss of control effectiveness faults. In this work, time-varying faults, Lipschitz nonlinear property and general stochastic characteristics are taken into consideration in a unified framework. Instead of using the system output signal, the output distribution is adopted for shape control. Both the states and faults are simultaneously estimated by an adaptive observer. Then, a fault tolerant shape controller is designed to compensate for the faults and realize stochastic output distribution tracking. Both the fault estimation and the fault tolerant control schemes are designed based on linear matrix inequality (LMI) technique. Satisfactory performance has been obtained for a numerical simulation example. Furthermore the proposed scheme is successfully tested in a case study of particle size distribution control for an emulsion polymerization reactor.  相似文献   

20.
The problem of adaptive leaderless consensus control of a class of uncertain strict feedback nonlinear systems with guaranteed transient performance is investigated in this paper. The system model is a class of strict feedback nonlinear systems with parametric uncertainty, actuator fault and external disturbance. How to guarantee the transient performance of consensus error is involved. To solve this problem, the consensus is transmitted into stabilization of a new variable. Ultimately the consensus errors will asymptotically converge to zero and faster than a given exponentially converging variable. Finally, simulation results show the effectiveness of proposed control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号