首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this review was to determine how the findings of biomechanics and motor control/learning research may be used to improve golf performance. To be eligible, the biomechanics and motor learning studies had to use direct (ball displacement and shot accuracy) or indirect (clubhead velocity and clubface angle) golf performance outcome measures. Biomechanical studies suggested that reducing the radius path of the hands during the downswing, increasing wrist torque and/or range of motion, delaying wrist motion to late in the downswing, increasing downswing amplitude, improving sequential acceleration of body parts, improving weight transfer, and utilising X-factor stretch and physical conditioning programmes can improve clubhead velocity. Motor learning studies suggested that golf performance improved more when golfers focused on swing outcome or clubhead movement rather than specific body movements. A distributed practice approach involving multiple sessions per week of blocked, errorless practice may be best for improving putting accuracy of novice golfers, although variable practice may be better for skilled golfers. Video, verbal, or a combination of video and verbal feedback can increase mid-short iron distance in novice to mid-handicap (hcp) golfers. Coaches should not only continue to critique swing technique but also consider how the focus, structure, and types of feedback for practice may alter learning for different groups of golfers.  相似文献   

2.
Most previous research on golf swing mechanics has focused on the driver club. The aim of this study was to identify the kinematic factors that contribute to greater hitting distance when using the 5 iron club. Three-dimensional marker coordinate data were collected (250 Hz) to calculate joint kinematics at eight key swing events, while a swing analyser measured club swing and ball launch characteristics. Thirty male participants were assigned to one of two groups, based on their ball launch speed (high: 52.9 ± 2.1 m · s(-1); low: 39.9 ± 5.2 m · s(-1)). Statistical analyses were used to identify variables that differed significantly between the two groups. Results showed significant differences were evident between the two groups for club face impact point and a number of joint angles and angular velocities, with greater shoulder flexion and less left shoulder internal rotation in the backswing, greater extension angular velocity in both shoulders at early downswing, greater left shoulder adduction angular velocity at ball contact, greater hip joint movement and X Factor angle during the downswing, and greater left elbow extension early in the downswing appearing to contribute to greater hitting distance with the 5 iron club.  相似文献   

3.
Understanding of the inter-joint coordination between rotational movement of each hip and trunk in golf would provide basic knowledge regarding how the neuromuscular system organises the related joints to perform a successful swing motion. In this study, we evaluated the inter-joint coordination characteristics between rotational movement of the hips and trunk during golf downswings. Twenty-one right-handed male professional golfers were recruited for this study. Infrared cameras were installed to capture the swing motion. The axial rotation angle, angular velocity and inter-joint coordination were calculated by the Euler angle, numerical difference method and continuous relative phase, respectively. A more typical inter-joint coordination demonstrated in the leading hip/trunk than trailing hip/trunk. Three coordination characteristics of the leading hip/trunk reported a significant relationship with clubhead speed at impact (r < ?0.5) in male professional golfers. The increased rotation difference between the leading hip and trunk in the overall downswing phase as well as the faster rotation of the leading hip compared to that of the trunk in the early downswing play important roles in increasing clubhead speed. These novel inter-joint coordination strategies have the great potential to use a biomechanical guideline to improve the golf swing performance of unskilled golfers.  相似文献   

4.
目的:从生物力学角度探究声音反馈训练(teaching with acoustical guidance,TAGteachTM)和传统训练方法对高尔夫初学者击球效果和挥杆动作的影响。方法:21名无高尔夫训练基础的大学生受试者随机分为声音反馈训练组(clicker training group,CG,n=11)和传统训练组(traditional training group,TG,n=10),由一名韩国职业高尔夫教练员进行5周的高尔夫挥杆动作教学训练,使用7号铁杆。训练后,对受试进行挥杆动作生物力学测试,对比两组受试者的击球效果和挥杆动作。结果:5周声音反馈训练后,CG杆速、球速、杆面角度、击球距离等击球表现指标显著优于TG(P<0.01)。挥杆动作方面,CG从上杆阶段到随挥初期挥杆时间显著小于TG(P<0.05),骨盆转动速度显著大于TG(P<0.05);CG骨盆转动角度和COM-COP倾角的标准化角加速度变化率显著小于TG(P<0.05)。结论:声音反馈是一种有效的训练辅助手段,可提升高尔夫初学者的挥杆练习效果。  相似文献   

5.
While the role of the upper torso and pelvis in driving performance is anecdotally appreciated by golf instructors, their actual biomechanical role is unclear. The aims of this study were to describe upper torso and pelvis rotation and velocity during the golf swing and determine their role in ball velocity. One hundred recreational golfers underwent a biomechanical golf swing analysis using their own driver. Upper torso and pelvic rotation and velocity, and torso-pelvic separation and velocity, were measured for each swing. Ball velocity was assessed with a golf launch monitor. Group differences (groups based on ball velocity) and moderate relationships (r > or = 0.50; P < 0.001) were observed between an increase in ball velocity and the following variables: increased torso-pelvic separation at the top of the swing, maximum torso-pelvic separation, maximum upper torso rotation velocity, upper torso rotational velocity at lead arm parallel and last 40 ms before impact, maximum torso-pelvic separation velocity and torso-pelvic separation velocity at both lead arm parallel and at the last 40 ms before impact. Torso-pelvic separation contributes to greater upper torso rotation velocity and torso-pelvic separation velocity during the downswing, ultimately contributing to greater ball velocity. Golf instructors can consider increasing ball velocity by maximizing separation between the upper torso and pelvis at the top of and initiation of the downswing.  相似文献   

6.
Biomechanics helps us understand the association between technique changes and performance improvement during learning. The aim of this research was to investigate joint kinetic characteristics of technique during learning of the longswing on the high bar. Twelve male, novice participants took part in the learning study. During swing attempts in 8 weekly testing sessions, kinematic data were collected. Inverse dynamics analysis was performed from known zero forces at the toes to quantify joint moments and power at the hips and shoulders. Key biomechanical constraints that limited performance outcome were identified based on changes in joint kinetics during learning. These constraints were the ability to perform a large shoulder power and to overcome passive kinetics acting during the downswing. Constraints to action at the level of joint kinetics differentially challenge learners and therefore could underpin more individual, specific learning interventions. Functional phases, defined by maximum hyperextension to flexion of the hips and maximum flexion to extension of the shoulders, did not describe the key joint kinetics of the hip and shoulder for novices. The functional phases may serve however to identify novices that were unable to overcome the passive kinetic constraint.  相似文献   

7.
Weight transfer research in the golf swing has produced conflicting and inconclusive results. A limitation of previous studies is the assumption that only one swing "style" exists within the golf swing. If different styles, or movement strategies, exist and if the different styles are analysed together in a single group, statistical errors will result. The aim of this study was to determine if different weight transfer styles exist in the golf swing by applying cluster analysis to centre of pressure (CP) patterns in the direction of hit (CPy) and to evaluate cluster analysis issues. Sixty-two professional to high handicap golfers performed simulated drives, hitting a golf ball into a net, while standing on two force plates. Centre of pressure position relative to the feet (CPy%) was quantified at eight swing events identified from 200-Hz video. Cluster analysis identified two major CPy% styles: a "Front Foot" style and a "Reverse" style. Both styles began with CPy% positioned evenly between the feet, moved to the back foot during backswing, and then forward during early downswing. Beyond early downswing, the Front Foot group continued to move CPy% to the Front Foot through to ball contact, while the Reverse group moved CPy% towards the back foot through ball contact and follow-through. Both weight transfer styles were evident across skill levels from professional to high handicap golfers, indicating that neither style was a technical error. Cluster analysis should include hierarchical and non-hierarchical clustering and use objective measures combined with theoretical assessment to determine the optimal number of clusters. Furthermore, a number of validation procedures should always be used to validate the solution.  相似文献   

8.
Understanding the dynamics of upper body motion during the downswing is an important step in determining the control strategies required for a successful and repeatable golf swing. The purpose of this study was to examine the relationship between head, thorax, and pelvis motion, during the downswing of professional golfers. Three-dimensional data were collected for 14 male professional golfers (age 27 +/- 8 years, golf-playing experience 13.3 +/- 8 years) using an optical motion analysis system. The amplitude and timing of peak speed and peak velocities were calculated for the head, thorax, and pelvis during the downswing. Cross-correlation analysis was used to examine the strength of coupling and phasing between and within segments. The results indicated the thorax segment had the highest peak speeds and peak velocities for the upper body during the downswing. A strong coupling relationship was evident between the thorax and pelvis (average R2 = 0.92 across all directions), while the head and thorax showed a much more variable relationship (average R2 = 0.76 across all directions). The strong coupling between the thorax and pelvis is possibly a method for simplifying the motor control strategy used during the downswing, and a way of ensuring consistent motor patterns.  相似文献   

9.
A number of recent studies have measured the extent and timing of segment rotation during the golf swing. A promising technique, instantaneous screw axis (ISA) theory, could provide a better expression of segment rotation. In Part 1 of this two-part study, the objectives are to identify the ISA of the pelvis, shoulders and left arm during the downswing, compute segment angular velocity relative to that segment’s ISA and verify that ISA theory is a valid tool to analyse segment rotation during the golf swing. Results indicate that for all subjects, at least 71% of marker velocity is a result of rotation about their respective ISA, when averaging results over the duration of the downswing, confirming that motion is primarily rotational. Furthermore, ISA position and orientation of each segment approaches, on average, the expected gross axis of rotation, confirming that motion about the ISA is representative of joint motion.  相似文献   

10.
A number of recent studies have measured the extent and timing of segment rotation during the golf swing. A promising technique, instantaneous screw axis (ISA) theory, could provide a better expression of segment rotation. In Part 1 of this two-part study, the objectives are to identify the ISA of the pelvis, shoulders and left arm during the downswing, compute segment angular velocity relative to that segment’s ISA and verify that ISA theory is a valid tool to analyse segment rotation during the golf swing. Results indicate that for all subjects, at least 71% of marker velocity is a result of rotation about their respective ISA, when averaging results over the duration of the downswing, confirming that motion is primarily rotational. Furthermore, ISA position and orientation of each segment approaches, on average, the expected gross axis of rotation, confirming that motion about the ISA is representative of joint motion.  相似文献   

11.
Pelvis-thorax coordination has been recognised to be associated with swing speed. Increasing angular separation between the pelvis and thorax has been thought to initiate the stretch shortening cycle and lead to increased clubhead speed. The purpose of this study was to determine whether pelvis-thorax coupling played a significant role in regulating clubhead speed, in a group of low-handicap golfers (mean handicap = 4.1). Sixteen participants played shots to target distances determined based on their typical 5- and 6-iron shot distances. Half the difference between median 5- and 6-iron distance for each participant was used to create three swing effort conditions: “minus”, “norm”, and “plus”. Ten shots were played under each swing effort condition using both the 5-iron and 6-iron, resulting in six shot categories and 60 shots per participant. No significant differences were found for X-factor for club or swing effort. X-factor stretch showed significant differences for club and swing effort. Continuous relative phase (CRP) results mainly showed evidence of the stretch shortening cycle in the downswing and that it was more pronounced late in the downswing as swing effort increased. Substantial inter-individual CRP variability demonstrated the need for individual analyses when investigating coordination in the golf swing.  相似文献   

12.
The aims of this study were to investigate the energy build-up and dissipation mechanisms associated with using an arm swing in submaximal and maximal vertical jumping and to establish the energy benefit of this arm swing. Twenty adult males were asked to perform a series of submaximal and maximal vertical jumps while using an arm swing. Force, motion and electromyographic data were recorded during each performance and used to compute a range of kinematic and kinetic variables, including ankle, knee, hip, shoulder and elbow joint powers and work done. It was found that the energy benefit of using an arm swing appears to be closely related to the maximum kinetic energy of the arms during their downswing, and increases as jump height increases. As jump height increases, energy in the arms is built up by a greater range of motion at the shoulder and greater effort of the shoulder and elbow muscles but, as jump height approaches maximum, these sources are supplemented by energy supplied by the trunk due to its earlier extension in the movement. The kinetic energy developed by the arms is used to increase their potential energy at take-off but also to store and return energy from the lower limbs and to "pull" on the rest of the body. These latter two mechanisms become more important as jump height increases with the pull being the more important of the two. We conclude that an arm swing contributes to jump performance in submaximal as well as maximal jumping but the energy generation and dissipation sources change as performance approaches maximum.  相似文献   

13.
Abstract

The aims of this study were to investigate the energy build-up and dissipation mechanisms associated with using an arm swing in submaximal and maximal vertical jumping and to establish the energy benefit of this arm swing. Twenty adult males were asked to perform a series of submaximal and maximal vertical jumps while using an arm swing. Force, motion and electromyographic data were recorded during each performance and used to compute a range of kinematic and kinetic variables, including ankle, knee, hip, shoulder and elbow joint powers and work done. It was found that the energy benefit of using an arm swing appears to be closely related to the maximum kinetic energy of the arms during their downswing, and increases as jump height increases. As jump height increases, energy in the arms is built up by a greater range of motion at the shoulder and greater effort of the shoulder and elbow muscles but, as jump height approaches maximum, these sources are supplemented by energy supplied by the trunk due to its earlier extension in the movement. The kinetic energy developed by the arms is used to increase their potential energy at take-off but also to store and return energy from the lower limbs and to “pull” on the rest of the body. These latter two mechanisms become more important as jump height increases with the pull being the more important of the two. We conclude that an arm swing contributes to jump performance in submaximal as well as maximal jumping but the energy generation and dissipation sources change as performance approaches maximum.  相似文献   

14.
Wrist movements have been identified as an important factor in producing a successful golf swing, with their complex motion influencing both club head velocity and orientation. However, a detailed analysis of wrist angles is lacking in the literature. The purpose of this study was to determine kinematics across wrists and club head characteristics during the golf swing under weak, neutral and strong grip conditions. Twelve professional male golfers executed 24 shots using a driver under three grip conditions. A six degrees of freedom analysis of the hand with respect to the distal forearm was performed using a 10-camera three-dimensional motion capture system. Differences in joint angles were explored using repeated measures ANOVAs at key swing events (onset, top of backswing and impact), in addition club head velocity and clubface angle at impact were also explored. Main findings revealed significant differences in flexion/extension and internal/external rotation for both wrists at all swing events, whereas fewer significant interactions were found in ulnar/radial deviation across grips for both wrists at all events. Clubface angle only differed significantly between the weak and the strong and neural grips, presenting a more ‘open’ clubface to the intended hitting direction. This study is the first to explore tri-planar wrist movement and the effect of different grips, such analysis has implications for coaching knowledge and practice and should inform future research into different aspects of skill, technique analysis and may inform injury mechanisms/prevention.  相似文献   

15.
The learning advantages of an external focus of attention in golf.   总被引:1,自引:0,他引:1  
This study examined whether the learning advantages of an external focus of attention relative to an internal focus, as demonstrated by Wulf, H?ss, and Prinz (1998), would also be found for a sport skill under field-like conditions. Participants (9 women, 13 men; age range: 21-29 years) without experience in golf were required to practice pitch shots. The practice phase consisted of 80 practice trials. One group was instructed to focus on the arm swing (internal focus), whereas another group was instructed to focus on the club swing (external focus). One day after practice, a retention test of 30 trials without instructions was performed. The external-focus condition was more effective for performance during both practice and retention.  相似文献   

16.
Golf requires proper dynamic balance to accurately control the club head through a harmonious coordination of each human segment and joint. In this study, we evaluated the ability for dynamic balance during a golf swing by using the centre of mass (COM)–centre of pressure (COP) inclination variables. Twelve professional, 13 amateur and 10 novice golfers participated in this study. Six infrared cameras, two force platforms and SB-Clinic software were used to measure the net COM and COP trajectories. In order to evaluate dynamic balance ability, the COM–COP inclination angle, COM–COP inclination angular velocity and normalised COM–COP inclination angular jerk were used. Professional golfer group revealed a smaller COM–COP inclination angle and angular velocity than novice golfer group in the lead/trail direction (P < 0.01). In the normalised COM–COP inclination angular jerk, the professional golfer group showed a lower value than the other two groups in all directions. Professional golfers tend to exhibit improved dynamic balance, and this can be attributed to the neuromusculoskeletal system that maintains balance with proper postural control. This study has the potential to allow for an evaluation of the dynamic balance mechanism and will provide useful basic information for swing training and prevention of golf injuries.  相似文献   

17.
Biomechanical energetic analysis of technique can be performed to identify limits or constraints to performance outcome at the level of joint work, and to assess the mechanical efficiency of techniques. The aim of this study was to investigate the biomechanical energetic processes during learning the longswing on the high bar. Twelve male, novice participants took part in a training study. Kinematic and kinetics data were collected during swing attempts in eight weekly testing sessions. Inverse dynamics analysis was performed from known zero forces at the toes. Joint work, total energy, and bar energy were calculated. Biomechanical constraints to action, that is, limits to novice performance, were identified as “total work” and “shoulder work”. The most biomechanically efficient technique was associated with an onset of the hip functional phase and joint work that occurred between 10–45° before the bottom of the swing. The learning of gross motor skills is realised through the establishment of a set of techniques with task specific biomechanical constraints. Knowledge of the biomechanical constraints to action associated with more effective and efficient techniques will be useful for both assessing learning and establishing effective learning interventions.  相似文献   

18.
The aim of this study was to develop a method to quantify movement variability in the backswing and downswing phase of the golf swing and statistically assess whether there was any relationship between movement variability and outcome variability. Sixteen highly skilled golfers each performed 10 swings wearing retro-reflective markers which were tracked by a three-dimensional (3D) motion analysis system operating at 400 Hz. Ball launch conditions were captured using a launch monitor. Performance variability was calculated for each body marker based on a scalene ellipsoid volume concept which produced a score representative of the 3D variability over the 10 trials. Outcome variability was quantified as the coefficient of variation of ball velocity for the 10 trials. The statistical analysis revealed no significant correlations between performance variability for each marker trajectory and outcome variability. Performance variability in the backswing or downswing was not related to ball velocity variability. It was postulated that individual players used their own strategies in order to control their performance variability, such that it had no effect on outcome variability.  相似文献   

19.
The purpose of this study was to evaluate possible effects of synchronized metronome training (SMT) on movement dynamics during golf-swing performance, as captured by kinematic analysis. A one-group, between-test design was applied on 13 male golfers (27.5 ± 4.6 years old, 12.7 ± 4.9 handicap) who completed 12 sessions of SMT over a four-week period. Pre- and post-assessments of golf swings with three different clubs (4-iron, 7-iron, and pitching wedge) were performed using a three-dimensional motion capture system. Club velocity at three different swing phases (backswing, downswing, and follow-through) was measured and cross-correlation analysis of time-series signals were made on joint couplings (wrist–elbow–shoulder) of both arms, and between joints and the club, during the full golf swing. There were significantly higher cross-correlations between joint-couplings and concomitant changes of the associated phase-shift differences, as well as reduced phase-shift variability at post-test. No significant effect of SMT was found for the club velocities. We suggest that domain-general influences of SMT on the underlying brain-based motor control strategies lead to a more coordinated movement pattern of the golf-swing performance, which may explain previous observations of significantly improved golf-shot accuracy and decreased variability after SMT.  相似文献   

20.
Turns (pirouettes) are an important movement in ballet and may be affected by “lateral bias”. This study investigated physiological differences exhibited by experienced and novice dancers, respectively, when performing pirouette with dominant and non-dominant leg supports, respectively. Thirteen novice and 13 experienced dancers performed turns on dominant or non-dominant legs. The maximum ankle plantarflexion, knee extension and hip extension were measured during the single-leg support phase. The inclination angle of rotation axis is the angle between instantaneous rotation axis and global vertical axis in the early single-leg support phase. Both groups exhibited a greater hip extension, knee extension, and ankle plantarflexion when performing a turn on the non-dominant leg. For experienced dancers, the inclination angle of rotation axis during the pre-swing phase was generally smaller for dominant leg support than non-dominant leg. However, no significant difference was found in inclination angle of rotation axis of novice dancers. For experienced dancers, an improved performance is obtained when using the dominant leg for support. By contrast, for novice dancers, the performance is independent of choice of support leg. The significant lateral bias in experienced dancers indicates the possible influence of training. That is, repetitive rehearsal on the preferred leg strengthens the impact of side dominance in experienced dancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号