首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Background:One-legged pedaling is of interest to elite cyclists and clinicians.However,muscular usage in 1-legged vs.2-legged pedaling is not fully understood.Thus,the study was aimed to examine changes in leg muscle activation patterns between 2-legged and 1-legged pedaling.Methods:Fifteen healthy young recreational cyclists performed both 1-legged and 2-legged pedaling trials at about 30 Watt per leg.Surface electromyography electrodes were placed on 10 major muscles of the left leg.Linear envelope electromyography data were integrated to quantify muscle activities for each crank cycle quadrant to evaluate muscle activation changes.Results:Overall,the prescribed constant power requirements led to reduced downstroke crank torque and extension-related muscle activities(vastus lateralis,vastus medialis,and soleus)in 1-legged pedaling.Flexion-related muscle activities(biceps femoris long head,semitendinosus,lateral gastrocnemius,medial gastrocnemius,tensor fasciae latae,and tibialis anterior)in the upstroke phase increased to compensate for the absence of contralateral leg crank torque.During the upstroke,simultaneous increases were seen in the hamstrings and uni-articular knee extensors,and in the ankle plantarflexors and dorsiflexors.At the top of the crank cycle,greater hip flexor activity stabilized the pelvis.Conclusion:The observed changes in muscle activities are due to a variety of changes in mechanical aspects of the pedaling motion when pedaling with only 1 leg,including altered crank torque patterns without the contralateral leg,reduced pelvis stability,and increased knee and ankle stiffness during the upstroke.  相似文献   

2.
ABSTRACT

A possible link between soccer-specific injuries, such as groin pain and the action of hip adductor muscles has been suggested. This study aimed to investigate neuromuscular activation of the adductor magnus (AM) and longus (AL) muscles during instep and side-foot soccer kicks. Eight university soccer players performed the two types of kick at 50%, 75% and 100% of the maximal ball speed. Surface electromyography (EMG) was recorded from the AM, AL, vastus lateralis (VL) and biceps femoris (BF) muscles of both kicking and supporting legs and the kicking motions were three-dimensionally captured. In the kicking leg, an increase in surface EMG with an increase in ball speed during instep kicking was noted in the AM muscle (p < 0.016), but not in AL, VL or BF muscles (p > 0.016). In the supporting leg, surface EMG of both AM and AL muscles was significantly increased with an increase in the ball speed before ball impact during both instep and side-foot kicks (p < 0.016). These results suggest that hip adductor muscles markedly contribute to either the kicking or supporting leg to emphasise the action of soccer kicks.  相似文献   

3.
ABSTRACT

This study aimed to examine the characteristics of electromyography (EMG) and kinematics of the supporting leg affecting energy cost while running at incline, level, and decline slopes. Twelve male Japanese middle- and long-distance runners volunteered for this study. The subjects were asked to run at 13.5 km·h?1 on a treadmill under three slope conditions. Sagittal plane kinematics and the EMG of the lower limb muscles, respiratory gases were recorded. Energy cost differed significantly between slopes, being the lowest in decline slope and the greatest in incline slope. Integrated EMG (iEMG) of leg extensor muscles was greater in the incline slope than in the decline slope, and iEMG of the gastrocnemius and soleus muscles correlated positively with energy cost. The knee and ankle joint kinematics were associated with energy cost during running. In incline slope, the knee and ankle joints were more extended (plantarflexed) to lift the body. These movements may disturb the coordination between the ankle and knee joints. The gastrocnemius muscle would do greater mechanical work to plantarflex the ankle joint rather than transfer mechanical energy as well as greater mechanical work of mono-articular muscles. These muscular activities would increase energy cost.  相似文献   

4.
Abstract

The aim of the present study was to investigate the patterns of shoulder muscle activation and joint torques during maximal effort eccentric contractions with shoulder extension, abduction, and diagonal movements on the isokinetic device. Participants in this investigation were nine men and four women with no history of shoulder injury or disorders. They all participated in overhead sports at least three days a week, and volunteered to participate in this study for shoulder isokinetic muscle strength testing. They performed eccentric muscle action with shoulder flexion, abduction, and diagonal movements at velocities of 60 rad·s?1 and 180 rad· s?1, which was followed alternately by passive shoulder flexion, abduction and diagonal movement at a velocity of 30 rad· s?1, and total range of motion was standardised to 90°. Electromyography (EMG) and torque values were calculated to every 10°, except for the start and end 5° during each task. During each test, the isokinetic force output and muscle activation were synchronised. EMG data were normalised by percentage of maximum voluntary isometric contraction (%MVIC). EMG signals were recorded by surface EMG from the anterior deltoid (AD), middle deltoid (MD), posterior deltoid (PD), upper trapezius (UT), middle trapezius (MT), and biceps brachii (BB) muscles during this test. All of the muscle patterns were significantly decreased at the last compared with the initial part during eccentric shoulder flexion movement, except for the BB muscle (P < 0.05). AD and BB muscles played a similar role when peak torque was generated under load during eccentric muscle action with varying shoulder movements. PD and UT muscle activities were significantly lower than the other muscle activities during eccentric contraction with shoulder flexion and abduction movements, and the PD and UT muscles played a significant role in conjunction with MD and MT muscles in varying degrees during eccentric contraction with shoulder diagonal movements at 180 rad·s?1 (P < 0.05). Our study demonstrated that MT muscle activity was greatly influenced when torque values showed a peak moment under load during maximum effort, eccentric contraction with shoulder abduction and diagonal movements. However, the MD, PD, UT, and MT muscle activities had no great influence when peak torque was generated under load during eccentric muscle action with shoulder diagonal movement at high velocity. The present study suggested that varying eccentric muscle activity patterns may be needed to investigate proper training and functional contributions of upper extremity muscles to stabilisation of the shoulder joint when peak torque was generated under load.  相似文献   

5.
ABSTRACT

In this study, we aimed to clarify the characteristics of neuromuscular function, kinetics, and kinematics of the lower extremity during sprinting in track and field athletes with a history of strain injury. Ten male college sprinters with a history of unilateral hamstring injury performed maximum effort sprint on an athletic track. The electromyographic (EMG) activity of the long head of the biceps femoris (BFlh) and gluteus maximus (Gmax) muscles and three-dimensional kinematic data were recorded. Bilateral comparisons were performed for the EMG activities, pelvic anterior tilt angle, hip and knee joint angles and torques, and the musculotendon length of BFlh. The activity of BFlh in the previously injured limb was significantly lower than that in the uninjured limb during the late-swing phase of sprinting (p < 0.05). However, the EMG activity of Gmax was not significantly different between the previously injured and uninjured limbs. Furthermore, during the late-swing phase, a significantly more flexed knee angle (p < 0.05) and a decrease in BFlh muscle length (p < 0.05) were noted in the injured limb. It was concluded that previously injured hamstring muscles demonstrate functional deficits during the late swing phase of sprinting in comparison with the uninjured contralateral muscles.  相似文献   

6.
PurposeThis study aimed to investigate whether there is a systematic change of leg muscle activity, as quantified by surface electromyography (EMG), throughout a standard running footwear assessment protocol at a predetermined running speed.MethodsThirty-one physically active adults (15 females and 16 males) completed 5 testing rounds consisting of overground running trials at a speed of 3.5 m/s. The level of muscle activity from 6 major leg muscles was recorded using surface EMG. The variables assessed were the EMG total intensity as a function of time and the cumulative EMG overall intensity. Systematic effects of the chronological testing round (independent variable) on the normalized EMG overall intensity (dependent variable) were examined using Friedman analysis of variates and post hoc pairwise Wilcoxon signed-rank tests (α = 0.05).ResultsThere was a systematic reduction in overall EMG intensity for all 6 muscles over the time course of the running protocol (p < 0.001) until the fourth testing round when EMG intensities reached a steady state. The one exception was the biceps femoris muscle, which showed a significant reduction of EMG intensity during the stance phase (p < 0.001) but not the swing phase (p = 0.16).ConclusionWhile running at a predetermined speed, the neuromuscular system undergoes an adaptation process characterized by a progressive reduction in the activity level of major leg muscles. This process may represent an optimization strategy of the neuromuscular system towards a more energetically efficient running style. Future running protocols should include a familiarization period of at least 7 min or 600 strides of running at the predetermined speed.  相似文献   

7.
‘A tribute to Dr J. Rogge’ aims to systematically review muscle activity and muscle fatigue during sustained submaximal quasi-isometric knee extension exercise (hiking) related to Olympic dinghy sailing as a tribute to Dr Rogge’s merits in the world of sports. Dr Jacques Rogge is not only the former President of the International Olympic Committee, he was also an orthopaedic surgeon and a keen sailor, competing at three Olympic Games. In 1972, in fulfilment of the requirements for the degree of Master in Sports Medicine, he was the first who studied a sailors’ muscle activity by means of invasive needle electromyography (EMG) during a specific sailing technique (hiking) on a self-constructed sailing ergometer. Hiking is a bilateral and multi-joint submaximal quasi-isometric movement which dinghy sailors use to optimize boat speed and to prevent the boat from capsizing. Large stresses are generated in the anterior muscles that cross the knee and hip joint, mainly employing the quadriceps at an intensity of 30–40% maximal voluntary contraction (MVC), sometimes exceeding 100% MVC. Better sailing level is partially determined by a lower rate of neuromuscular fatigue during hiking and for ≈60% predicted by a higher maximal isometric quadriceps strength. Although useful in exercise testing, prediction of hiking endurance capacity based on the changes in surface EMG in thigh and trunk muscles during a hiking maintenance task is not reliable. This could probably be explained by the varying exercise intensity and joint angles, and the great number of muscles and joints involved in hiking.

Highlights

  • Dr Jacques Rogge, former president of the International Olympic Committee and Olympic Finn sailor, was the first to study muscle activity during sailing using invasive needle EMG to obtain his Master degree in Sports Medicine at the Ghent University.

  • Hiking is a critical bilateral and multi-joint movement during dinghy racing, accounting for >60% of the total upwind leg time. Hiking generates large stresses in the anterior muscles that cross the knee and hip joint.

  • Hiking is considered as a quasi-isometric bilateral knee extension exercise. Muscle activity measurements during sailing, recorded by means of EMG, show a mean contraction intensity of 30-40% maximal voluntary contraction with peaks exceeding 100%.

  • Hiking performance is strongly related to the development of neuromuscular fatigue in the quadriceps muscle. Since maximal strength is an important determinant of neuromuscular fatigue during hiking, combined strength and endurance training should be incorporated in the training program of dinghy sailors.

  相似文献   

8.
The muscle activity paradox during circular rhythmic leg movements   总被引:1,自引:0,他引:1  
A cyclist's legs make a simple 360 degrees circular and rhythmic movement, activated by a simple flexion-extension function in a sagittal plane. However, because of the simultaneous combination of leg rotation in the hip, knee and ankle joint with translation of the upper body, the general motion becomes quite complex. This complexity is increased by the anatomical interpretations of EMG readings taken during the pedalling cycle, indicating a high activity of 'flexor' muscles during the downward 'extension' of the leg (0-90 degrees propulsion phase of the pedalling cycle). This calls for an anatomical paradox. In order to verify these interpretations, the activity of six lower limb muscles was measured under field circumstances on nine elite cyclists using a portable EMG data acquisition system and active surface electrodes allowing remote (non-telemetric) monitoring of the cyclists' muscle activity patterns. Measurements were made during a 1000 m submaximal but constant effort and during a 200 m sprint. Confirmation of the anatomical paradox was found in both test circumstances. Analyses of the normalized EMG in combination with torque values of both hip and knee during the pedalling cycle indicate a zero torque at 135 degrees for the knee, while at this same angle the overall extensor activity ends in one leg and starts simultaneously in the other leg (at 315 degrees). Since the propulsion does not continue until 180 degrees, the flexor muscles have to be activated before the extension activity ends in order to generate the continuation of the circular motion until (and beyond) the bottom dead centre (180 degrees).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
ABSTRACT

Ankle sprains are the most common injury in regular badminton players and usually occur at the end of a match or training. The purpose of the present study was to examine the influence of fatigue produced by badminton practice on the lower limb biomechanics of badminton players. It was hypothesized that fatigue induces ankle kinematic and lower leg muscle activity changes which may increase the risk of ankle sprain. Ankle kinematics, ankle kinetics and muscles activities of 17 regular badminton players were recorded during lateral jumps before and after an intense badminton practice session. Post-fatigue, ankle inversion at foot strike and peak ankle inversion increased (+2.6°, p = 0.003 and +2.5°, p = 0.005, respectively). EMG pre-activation within 100 ms before foot landing significantly decreased after fatigue for soleus (?23.4%, p = 0.031), gastrocnemius lateralis (?12.2%, p = 0.035), gastrocnemius medialis (?23.3%, p = 0.047) and peroneus brevis (?17.4%, p = 0.036). These results demonstrate impaired biomechanics of badminton players when fatigue increases, which may cause a greater risk of experiencing an ankle sprain injury.  相似文献   

10.
Abstract

The purpose of this study was to investigate changes in ankle joint stiffness and the associated changes in the gastrocnemius muscle and tendon due to static stretching. Seven healthy male participants lay supine with the hip and knee joints fully extended. The right ankle joint was rotated into dorsiflexion from a 30° plantar flexed position and the torque measured by a dynamometer. The ankle joint was maintained in a dorsiflexed position for 20 min (static stretching of the calf muscles). We performed surface electromyography of the medial and lateral gastrocnemii, the soleus, and the tibialis anterior of the right leg to confirm no muscle activity throughout static stretching and the passive test (passive dorsiflexion). During static stretching, the ankle joint angle and elongation of the gastrocnemius were recorded by goniometry and ultrasonography, respectively. Tendon elongation of the gastrocnemius was calculated based on the changes in the ankle joint angle and muscle elongation. In addition, the relationships between passive torques and ankle joint angles, and elongation of muscle and tendon, were examined before and after static stretching. The ankle dorsiflexion angle and tendon elongation increased significantly by 10 min after the onset of static stretching, while there was no further increase in muscle length. In addition, ankle dorsiflexion angle and tendon elongation at an identical passive torque (30 N · m) increased significantly (from 24±7° to 33±5° and from 17±2 mm to 22±1 mm, respectively) after static stretching. However, muscle elongation was unchanged. In conclusion, the current results suggest that an increase in the ankle joint dorsiflexion angle due to static stretching is attributable to a change in tendon not muscle stiffness.  相似文献   

11.
BackgroundDuring human locomotion, a sufficiently stiff foot allows the ankle plantar flexors to generate large propulsive powers. Increasing foot stiffness (e.g., via a carbon plate) increases the ankle's external moment arm in relation to the internal moment arm (i.e., increasing gear ratio), reduces plantar flexor muscles’ shortening velocity, and enhances muscle force production. In contrast, when activation of the foot's intrinsic muscles is impaired, there is a reduction in foot and ankle work and metatarsophalangeal joint stiffness. We speculated that the reduced capacity to actively control metatarsophalangeal joint stiffness may impair the gearing function of the foot at the ankle.MethodsWe used a tibial nerve block to examine the direct effects of the intrinsic foot muscles on ankle joint kinetics, in vivo medial gastrocnemius’ musculotendinous dynamics, and ankle gear ratio on 14 participants during maximal vertical jumping.ResultsUnder the nerve block, the internal ankle plantar flexion moment decreased (p = 0.004) alongside a reduction in external moment arm length (p = 0.021) and ankle joint gear ratio (p = 0.049) when compared to the non-blocked condition. Although medial gastrocnemius muscle–tendon unit and fascicle velocity were not different between conditions, the Achilles tendon was shorter during propulsion in the nerve block condition (p < 0.001).ConclusionIn addition to their known role of regulating the energetic function of the foot, our data indicate that the intrinsic foot muscles also act to optimize ankle joint torque production and leverage during the propulsion phase of vertical jumping.  相似文献   

12.
ABSTRACT

Unstable footwear may enhance training effects to the lower-limb musculature and sensorimotor system during dynamic gym movements. This study compared the instability of an unstable shoe with irregular midsole deformations (IM) and a control shoe (CS) during forward and lateral lunges. Seventeen female gym class participants completed two sets of ten forward and lateral lunges in CS and IM. Ground reaction forces, lower-limb kinematics and ankle muscle activations were recorded. Variables around initial ground contact, toe-off, descending and ascending lunge phases were compared statistically (p < .05). Responses to IM compared to CS were similar across lunge directions. The IM induced instability by increasing the vertical loading rate (p < .001, p = .009) and variability of frontal ankle motion during descending (p = .001, p < .001) and ascending phases (p = .150, p = .003), in forward and lateral lunges, respectively. At initial ground contact, ankle adjustments enhanced postural stability in IM. Across muscles, there were no activation increases, although results indicate peroneus longus activations increased in IM during the ascending phase. As expected, IM provided a more demanding training stimulus during lunge exercises and has potential to reduce ankle injuries by training ankle positioning for unpredictable instability.  相似文献   

13.
Abstract

The purpose of this research was to investigate the modifications in the control of the biceps brachii (agonist) and triceps brachii (antagonist) muscles during the learning of two elbow flexion tasks in sixteen college-age women. A positioning and a coincidence task were each performed at 40° and 200° per second angular velocity while bipolar surface electrodes recorded the electromyographic (EMG) activity of the muscles involved. Data on the EMG activity, angular kinematics, and timing and angular displacement error were quantified and subjected to statistical analyses. The results of the error analyses indicated that subjects did learn the various tasks over the 120 trials. Because there were no significant changes in the angular velocity patterns over trials, the EMG activity modifications are suggested to reflect differences in the control of the muscles monitored during the movements. In addition, EMG activity pattern modifications which occurred in discrete portions of the movements in both muscles indicate an increased cocontraction of the opposing muscles as subjects learned the tasks. Temporal periods in which modifications were observed appear to represent the critical periods in each movement task.  相似文献   

14.
BackgroundBalance impairment is one of the strongest risk factors for falls. Proprioception, cutaneous sensitivity, and muscle strength are 3 important contributors to balance control in older adults. The relationship that dynamic and static balance control has to proprioception, cutaneous sensitivity, and muscle strength is still unclear. This study was performed to investigate the relationship these contributors have to dynamic and static balance control.MethodsA total of 164 older adults (female = 89, left dominant = 15, age: 73.5 ± 7.8 years, height: 161.6 ± 7.1 cm, weight: 63.7 ± 8.9 kg, mean ± SD) participated in this study. It tested the proprioception of their knee flexion/extension and ankle dorsi/plantarflexion, along with cutaneous sensitivity at the great toe, first and fifth metatarsals, arch, and heel, and the muscle strength of their ankle dorsi/plantarflexion and hip abduction. The Berg Balance Scale (BBS) and the root mean square (RMS) of the center of pressure (CoP) were collected as indications of dynamic and static balance control. A partial correlation was used to determine the relationship between the measured outcomes variables (BBS and CoP-RMS) and the proprioception, cutaneous sensitivity, and muscle strength variables.ResultsProprioception of ankle plantarflexion (r = –0.306, p = 0.002) and dorsiflexion (r = –0.217, p = 0.030), and muscle strength of ankle plantarflexion (r = 0.275, p = 0.004), dorsiflexion (r = 0.369, p < 0.001), and hip abduction (r = 0.342, p < 0.001) were weakly to moderately correlated with BBS. Proprioception of ankle dorsiflexion (r = 0.218, p = 0.020) and cutaneous sensitivity at the great toe (r = 0.231, p = 0.041) and arch (r = 0.285, p = 0.002) were weakly correlated with CoP-RMS in the anteroposterior direction. Proprioception of ankle dorsiflexion (r = 0.220, p = 0.035), knee flexion (r = 0.308, p = 0.001) and extension (r = 0.193, p = 0.040), and cutaneous sensitivity at the arch (r = 0.206, p = 0.028) were weakly to moderately correlated with CoP-RMS in the mediolateral direction.ConclusionThere is a weak-to-moderate relationship between proprioception and dynamic and static balance control, a weak relationship between cutaneous sensitivity and static balance control, and a weak-to-moderate relationship between muscle strength and dynamic balance control.  相似文献   

15.
The objective of this study is to clarify the functional roles of upper limb muscles during standing and seated cycling when power output increases. We investigated the activity of seven upper limb and trunk muscles using surface electromyography (EMG). Power outputs ranged from ~100–700 W with a pedalling frequency of 90 revolution per minute. Three-dimensional handle and pedal forces were simultaneously recorded. Using non-negative matrix factorisation, we extracted muscle synergies and we analysed the integrated EMG and EMG temporal patterns. Most of the muscles showed tonic activity that became more phasic as power output increased. Three muscle synergies were identified, associated with (i) torso stabilisation, (ii) compensation/generation of trunk accelerations and (iii) upper body weight support. Synergies were similar for seated and standing positions (Pearson’s r > 0.7), but synergy #2 (biceps brachii, deltoidus and brachioradialis) was shifted forward during the cycle (~7% of cycle). The activity levels of synergy #1 (latissimus dorsi and erector spinae) and synergy #2 increased markedly above ~500 W (i.e., ~+40–70% and +130–190%) and during periods corresponding to ipsi- and contralateral downstrokes, respectively. Our study results suggest that the upper limb and trunk muscles may play important roles in cycling when high power outputs are required.  相似文献   

16.
ABSTRACT

We examined the association between footfall pattern and characteristics of lower limb muscle function and compared lower limb muscle function between forefoot and rearfoot runners. Fifteen rearfoot and 16 forefoot runners were evaluated using ultrasonography of the gastrocnemii and tibialis anterior while strike index and heel strike angle quantified footfall pattern. Higher strike index was associated with lower medial gastrocnemius echo intensity (p = 0.05), lower lateral gastrocnemius echo intensity (p = 0.04), smaller tibialis anterior pennation angle (p = 0.05), and longer lateral gastrocnemius fascicle length (p = 0.04). Larger heel strike angle was associated with smaller medial gastrocnemius cross-sectional area (p = 0.04), shorter lateral gastrocnemius fascicle length (p < 0.01), and lower plantar flexion moment (p < 0.01). Larger plantar flexion moment was associated with lesser medial gastrocnemius echo intensity (p = 0.04), lesser lateral gastrocnemius echo intensity (p = 0.03), and greater lateral gastrocnemius fascicle length (p = 0.02). A smaller plantar flexion moment, larger heel strike angle, lower tibialis anterior echo intensity, larger tibialis anterior pennation angle, and smaller lateral gastrocnemius pennation angle were observed in rearfoot compared to forefoot runners (p < 0.05). Lower limb muscle architecture is associated with footfall pattern and ankle mechanics during running.

Abbreviation: EMG: electromyographic; MG: medial gastrocnemius; LG: lateral gastrocnemius; TA: tibialis anterior; EI: echo intensity; CSA: cross-sectional area; PA: pennation angle; FL: fascicle length; FT: fat thickness  相似文献   

17.
BackgroundShort-leg walking boots are a common intervention for acute and chronic lower extremity injury. Few studies have examined the neuromuscular adaptations associated with short-leg walking boots and no previous study has investigated timing characteristics of muscle activation during gait. The purpose of the current study was to examine the timing and amplitudes of muscle activation of the extrinsic ankle musculature during walking in two types of short-leg walking boots.MethodsEleven healthy young adults performed five level walking trials at a self-selected pace in each of three conditions: normal walking, Gait Walker and Equalizer short-leg walking boots. Ground reaction forces were collected from a force platform while surface electromyography (EMG) was collected from the tibialis anterior, peroneus longus and medial gastrocnemius. EMG signals were rectified and smoothed using the root mean squared with a 20-ms smoothing window and were normalized to the largest mean of the normal walking trials. A repeated measures analysis of variance was used to assess the effect of short-leg walking boots on the onset, duration and amplitude of muscle activation.ResultsShort-leg walking boots were generally associated with earlier onsets of muscle activation and longer durations of muscle activation. However, there was no reduction in EMG amplitude.ConclusionThe findings of this study show that the induced alterations in muscle activation patterns may limit the short-leg walking boots.  相似文献   

18.
Abstract

This study examined the influence of holding a bag with one hand on the center of foot pressure (COP) and the electromyographic responses in lower leg muscles. Thirteen healthy male adults participated in this study to keep an upright posture while holding a load with the dominant hand with four bag weight conditions (0%, 15%, 30%, and 45% of maximal voluntary contraction (MVC) of the jerk strength). Integrated Electromyography (iEMG) and mean power frequency (MPF) of EMG were calculated to estimate the degree of muscle activity and fatigue in the tibialis anterior and soleus that are involved in ankle joint control. Body sway was evaluated by the mean position of left-right (X) and front-back (Y) axis sway and the following 4 body sway factors; unit time sway factor (F1), front-back sway factor (F2), left-right sway factor (F3), high frequency band power spectrum factor (F4). When holding a bag at 45% MVC or more of the jerk strength with a single hand for one minute, muscle activity in the lower leg on the side of the bag increased markedly, and muscle fatigue was induced in the antigravity muscles of both legs. As a result, anteroposterior sway increased to a short, quick sway.  相似文献   

19.
BackgroundThe few previous studies that focused on the effects of compression garments (CG) on distance running performance have simultaneously measured electromyogram, physiological, and perceptual parameters. Therefore, this study investigated the effects of CG on muscle activation and median frequency during and after distance running, as well as blood-lactate concentration and rating of perceived exertion (RPE) during distance running.MethodsEight healthy male recreational runners were recruited to randomly perform two 40 min treadmill running trials, one with CG, and the other with control garment made of normal cloth. The RPE and the surface electromyography (EMG) of 5 lower extremity muscles including gluteus maximus (GM), rectus femoris (RF), semitendinosus (ST), tibialis anterior (TA), and gastrocnemius (GAS) were measured during the running trial. The blood-lactate levels before and after the running trial were measured.ResultsWearing CG led to significant lower muscle activation (p < 0.05) in the GM (decreased 7.40%–14.31%), RF (decreased 4.39%–4.76%), and ST (decreased 3.42%–7.20%) muscles; moreover, significant higher median frequency (p < 0.05) in the GM (increased 5.57%) and ST (increased 10.58%) muscles. Wearing CG did not alter the RPE values or the blood-lactate levels (p > 0.05).ConclusionWearing CG was associated with significantly lower muscle activation and higher median frequency in the running-related key muscles during distance running. This finding suggested that wearing CG may improve muscle function, which might enhance running performance and prevent muscle fatigue.  相似文献   

20.
This study aimed to investigate activation characteristics of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles during the acceleration and maximum-speed phases of sprinting. Lower-extremity kinematics and electromyographic (EMG) activities of the BFlh and ST muscles were examined during the acceleration sprint and maximum-speed sprint in 13 male sprinters during an overground sprinting. Differences in hamstring activation during each divided phases and in the hip and knee joint angles and torques at each time point of the sprinting gait cycle were determined between two sprints. During the early stance of the acceleration sprint, the hip extension torque was significantly greater than during the maximum-speed sprint, and the relative EMG activation of the BFlh muscle was significantly higher than that of the ST muscle. During the late stance and terminal mid-swing of maximum-speed sprint, the knee was more extended and a higher knee flexion moment was observed compared to the acceleration sprint, and the ST muscle showed higher activation than that of the BFlh. These results indicate that the functional demands of the medial and lateral hamstring muscles differ between two different sprint performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号