首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
谈谈[x]和{x}     
[x]表示实数x的整数部分,或者说[x]是不大于x的最大的整数。例如,[2.5]=2,[π]=3,[—5]=—5,[—5~(1/2)]=—3。如果把一个实数表示为一个整数与一个正的纯小数或零的和的形式,即x=[x]+{x},(x}是x的小数部分,那么{x}=x—[x]。例如,{2.5}=0.5,{π}=π—3,{—5}=0,{—5~(1/2)}=—5~(1/2)+3。  相似文献   

2.
函数〔x〕     
<正> 函数[x]是表示不大于实数x的最大整数。如[3.5]=3,[-1.2]=-2,[3~(1/2)]=1,[-3~(1/2)]=-2,[π]=3等。为便于问题的讨论,现作如下的定义: 定义:若实数x=n+r,其中n∈Z,0≤r<1,则[x]=n。 这一定义也可述为:若n≤x相似文献   

3.
对于任意实数x,[x]表示不超过。的最大整数,符号[ ]叫做取整号,或叫高斯记号.取整运算(函数)又叫做高斯函数.由定义可知,[x]≤x,x=2.3时,[2,3]=2,x=-2.3时,[-2.3]=-3.与[x]密切相关的是x的小数部分,我们用{x}表示,在定义下,x减去它的小数部分就等于它的整数部分,即x-{x}=[x],因此x=  相似文献   

4.
有些数学题不是从方程求解形式提出,但若能设法对某些条件变换成两数和与两数积,然后用韦达定理的逆定理来布列方程求解,使问题得到解决。 [例1] 若x=2-3~(1/2),求x~1-5x~3 6x~2-5x的值。显然,这题直接代入计算是很繁的,若根据一元二次方程根的性质,由x=2-3~(1/2)可知x_1=2-3~(1/2),x_2=2 3~(1/2),一定是某一元二次方程的两根,巧用根和系数关系定使解题简捷。解由根与系数关系可知,x_1=2-3~(1/2),x_2=2 3~(1/2)是方程x~2-4x 1=0的两根, ∴ x~4-5x~3 6x~2-5x=(x~2-4x 1)(x~2-x 1)-1=0。 (x~2-x 1)-1=-1。例2 已知实数a、b、c满足:a=6-b,c~2  相似文献   

5.
设x是实数,符号“[x]”表示不大于x的最大整数。例如:[7.5]=7,[1/6]=0,[-4.8]=-5,[n]=n(n为整数)。由[n]的定义可知:(1)x=[x]+α,0≤α<1;(2)〔x〕≤x<[x]+1或x-1<[x]≤x;(3)[n+x]=n+[x](n为整数)。利用这些简单的性质,可解一些含有[x]的方程。解法的基本思想是:先求出  相似文献   

6.
1配凑法例如,已知f(x 1)=x~2-3x 2,求f(x).因为f(x 1)=(x 1)~2-5(x 1) 6,所以f(x)=x~2-5x 6.2换元法例如,已知f(xx 1)=x2x 21 1x,求f(x).设xx 1=t,则x=t1-1,代入已知条件得f(t)=1 (t-1)2 (t-1)=t2-t 1,故f(x)=x2-x 1.3待定系数法例如,已知f[f(x)]=4x 3,求一次函数f(x).设一次函数f(x)=kx b,代入已知条件得f[f(x)]=f(kx b)=k(kx b) b=k2x bx b,比较系数得k=2,b=1或k=-2,b=-3所以f(x)=2x 1或f(x)=-2x-3.4方程组法例如,已知函数f(x)的定义域为{x|x≠0},满足f(x)-2f(1x)=x-1,求f(x).将原方程的x变量换成1x,则有f(1x)-2f(x)=1x-1,与原方程联立方…  相似文献   

7.
高斯函数[x]     
基础知识设x为任意实数,用[x]表示不大于x的最大整数,例如:[3.14]=3,[-1.4142]=-2.这个函数[x]称为高斯函数(亦称取整函数). 显然:高斯函数[x]的定义域是R,值域为Z,其图象是不连续的水平线段(如图1):  相似文献   

8.
求解数学问题有时如将问题转化,可达到化难为易、化繁为简的目的。转化的思想有助于培养学生灵活运用知识和提高解题的能力。1 利用结构特征实现转化 例1 解方程[1 (1/x)]~(1/2)-[x/(x 1)]~(1/2)=[2~(1/2)/2]. (1996,江苏省盐城市中考题) 分析:直接两边平方求解较繁冗.用换元法也有一定的计算量,注意到方程左边呈倒数差的形式,可将右边也拆成两倒数差的形式2~(1/2)/2=  相似文献   

9.
题方程(2(x+1)~(1/5)+1-1)~4+(2(x+1)~(1/5)-3)~4=16所有实数根的和是( )(A)(121)/(16) (B)0 (C)-(45)/8 (D)(45)/8(1996年荆沙市初中数学竞赛题) 解法一此方程中的2(x+1)~(1/5)-1与2(x+1)~(1/5)-3相差2,  相似文献   

10.
形如y=[x]的函敷称为高斯函数(或取整函数),其中[x]表示不超过x的最大整数.奶[3,5]=3,[-4.1]=-5,[0.8]=0等.实际生活中有不少问题可以运用此函数解决.  相似文献   

11.
含有未知函数的方程叫做函数方程。解函数方程的问题,就是求能使函数方程成立的一个函数或一类函数的集合。下面是四类函数方程的初等解法。一、利用函数的奇偶性解函数方程。若在函数方程中涉及函数奇偶性时,此时自变量x的位置具有互反关系。用-x代替x得一新方程,将新方程和原方程联立组成关于所求未知函数的方程组,再用消元法求出未知函数。 [例1] 已知f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=1987x(5-x~2)~(1/2)+x~(1988),求f(x)和g(x)。解:由已知得x定义域是[-5~(1/2),5~(1/2)],因f(x),g(x)分别为偶函数和奇函数,故用-x代替方程中的x,得一新方程,再将所得新方程与原方程联立得  相似文献   

12.
乐茂华 《湘南学院学报》2007,28(5):18-18,23
对于实数α,设[α]是α的整数部分,本文运用初等方法证明了;方程[logx(x-1)+logx-1(x+1)+logx+1(2x)]=x仅有正数解x=4.  相似文献   

13.
关于多元方程整数解的求法在不少书中已作研究,这里通过几例,介绍某些特殊多元方程一般解的几种求法。 (一) 利用“实数的偶次幂为非负数”的结论 [例1] 求方程x+3~(1/a)+y-1/2~(1/2)+z~(1/2)-7 =x+y+z的实数解解:原方程可变形为 (x+3~(1/2)-2)~2+(y-1/2~(1/2)-1/2)+(z~(1/2)+1/2)~2=0 可得  相似文献   

14.
在反三角函数的学习中,我们得到了以下结论:arcsin[sin(x)]=x。(x∈[-π/2、π/2])、本文试着探讨一下当x(?)[-π/2、π/2]时,此类三角函数的求值。我们先看两道反三角函数的求值题。 [例1.] 求值:arcsin[sin(-8)]: 解:∵-  相似文献   

15.
在解高次方程时,往往因未知数的次数较高,使得求解过程比较复杂,为了避免这一点,这里介绍一种解一类高次方程的巧妙方法——常量代换法。即把未知量暂时看作常数而把某一次数较低的特殊常量作为未知量,得到一个关于这个特殊常量的方程,解此方程即得这个特殊常量用未知数的代数式表示的方程,再解此方程,即得原方程的解,下面举例加以说明。 [例1] 解方程x~3 2(3~(1/2))x~2 3x 3~(1/2)-1=0 这是三次方程,且系数中含有无理数。不易求解,若反过来把x看作已知数,3~(1/2)看作未知数t,  相似文献   

16.
在中小学数学教育刊物上,有教师著文发表了同出一辙的观点(以刊载时间先后为序):文[1]αb÷α6=α6÷α·6.文[2]63~(1/2)÷3 6~(1/2)=6×3~(1/2)÷3×6~(1/2).文[3]认为方程8÷0.4x=11.29-10.65与方程8÷(0.4x)=11.29-10.65有区别.文[4]将方程0.95÷4x=1.9中的“0.95  相似文献   

17.
中学代数中,有些较为特殊的方程,在实数范围内无解,若依照一般解法,不但演算过程复杂,而且很难判定它们在实数范围内是否无解。本文试图给出这类无解方程的两个判定定理,可以简化解题过程,省时省力。定理1:若方程f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0无实数根,则方程f(x)=0无实数根。(其中f(x),g(x),f_1(y)均为代数函数,下面定理2假设相同。)。证明:设f(x)=0有实数根x_0,则有: f_1[g(x_0)]=0。令 y_0=g(x_0),则f_1(y_0)=0 即y_0是方程f_1(y)=0的实数根,与题设相矛盾。从而方程f(x)=0无实数根。定理2:若f(x)=0可表示成f_1[g(x)]=0,且f_1(y)=0有实数根y_1,y_2,…,y_n,但对于每一个y_i(1≤i≤n),方程g(x)=y_i都无实数根,则方程f(x)=0无实根。  相似文献   

18.
(本讲适合初中) 在初中数学竞赛中,经常出现含有取整符号[x]的问题.所谓的[x],就是表示不超过实数x的最大整数,例如,[3.4]=3,[-2.7]=-3.这一规定最早为大数学家高斯所使用,故[-]被称为高斯函数.  相似文献   

19.
已知二次曲线方程为:F(x,y)=Ax~2 Bxy Cy~2 Dx Ey F=0,若以点P(x_0,y_0)为中点的二次曲线的弦存在,求这弦所在的直线方程,是解析几何里常见的一类问题。本文旨在给出这弦所在直线方程的四种求法。 方法一,设所求直线方程为y-y_0=k(x-x_0)将y=k(x-x_0) y_0代入二次曲线方程,整理得:(A BK CK~2)x~2-[2Cx_0k~2 (Bx_0-2Cy_0-E)k-(By_0 D)]x [Cx_0~2k~2-(2Cx_0y_0 Ex_0)k (Cy_0~2 Ey_0 F)]=0  相似文献   

20.
我们在解含有字母系数的方程的题目时,一定要注意未知数最高次数的系数的讨论,不然就会出错,如下面两例: [例1] 已知一元二次方程kx~2-(21-1)x k=0,有两个不相等的实数根,则k的取值范围是____。(1989年贵阳市中考题) 错解:由判别式△=[-(2k-1)]~2-4k~2>0 得 -4k 1>0,即k<1/4, 分析:因为已知方程是关于x的二次方程,故k≠0,所以,答案应为k<1/4且k≠0, [例2] 如果关于x的方程mx~2-2(m 2)x m 5=0没有实数根,那么关于x的方程(m-5)x~2-2(m 2)x m=0的实数根  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号