首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
定理设边长依次为 a_1,a_2,…,a_k(k≥3)的 k 边形外切于圆,则证明:设 k 边形 A_1…A_k 切圆 O 于点 B_1,…,B_k,(A_iA_(i 1)切圆于 B_i,)且A_iA_(i 1)=a_i(A_(k 1)=A_k),A_iB_i=x_i(i=1,…,k),那么有a_i=x_i x_(i 1)(i=1,…,k,x_(k 1)=x_1),∑a_i=2∑x_i(以下略去求和限),以及  相似文献   

2.
定理 P是凸n边形A_1A_2…A_n内一点,记∠PA_iA_(i 1)=α_i,i=1,…,n(A_(n-1)≡A_1),则 sum from i=1 to n(ctgα_i)≥sum from i=1 to n(ctgA_i ncsc(2π/n))。 (1) 证明 由正弦定理,得  相似文献   

3.
设P为正n边形A_1A_2…A_n外接圆上任意一点,R为这正n边形外接圆半径,则P到各顶点距离平方和为定值2nR~2,即 sum from i=1 to n PA_i~2=2nR~2 (1) 本文试对这一有趣的定值问题作适当引伸,得到一些更一般的结论。定理1 设正n边形A_1A_2…A_n的中心为O,半径为R,P是以O为圆心以r为半径的圆  相似文献   

4.
本刊文[1]证明了关于圆内接正多边形的下述性质:正 n(n≥3)边形外接圆上任一点到该正 n 边形各顶点距离的平方和为2nR~2(其中 R 是外接圆半径).文[1]的证明比较繁复,今简证如下:在平面直角坐标系中,设任意给定的一个正 n 边形A_0A_1A_2…A_(n-1)各顶点的坐标是 A_k(Rcos(2kπ/n),Rsin(2kπ/n))(k=0,1,2,…,n-1)其外接圆上任意取定的一点 P的坐标是 P(Rcosθ,Rsinθ).显然点 P 到正 n 边形各顶点距离的平方和 S 是  相似文献   

5.
本文拟用解析法将康托尔(M.B.Cantor 1829~1920年,德国数学家、数学史专家)定理及其推广介绍如下: 1.引理求一点P(x,y),使到已知多边形A_1A_2…A_n的各顶点A_i(x_i,y_i)(i=1,2,…,n)的距离的平方之和为最小。解:PA_1~2 PA_2~2 … PA_Q~2=〔(x-x_1)~2 (x-x_2)~2 … (x-x_n)~2〕 〔(y-y_1)~2 (y-y_2)~2 … (y-y_n)~2〕=〔nx~2-2(x_1 x_2 … x_n)x x_1~2 x_2~2 … x_n~2〕 〔ny~2-2(y_1 y_2 … y_n)y y_1~2 y_2~2 … y_n~2〕,  相似文献   

6.
本文得到一般n边形的Ceva定理: 定理1.设A_1A_2…A_n为一个平面内的n边形,O为平面内一点,且O与A_1,A_2,…,A_n中任两点不共线,若A_iO交A_jA_(j+l)(i=1,2,…,n;j≠i,i-I)于B_(ji),则 multiply from i=1 to n[(A_iB_(i.i-k)/B_(i.i-k) A_(i+1))·(A_iB_(i.i+1+k)/B_(i.i+1+k)A_(i+1))]=1, 约定:1.若l∥AB,则认为l与线段AB(或BA)的延长线相交于无穷远点S,且AS=SB,2.若i=mn+p,j=qn+t,m,q∈Z,p,t=1,2,…,n,则B_(ij)=B_(p.t),A_i=A_p。(下同)  相似文献   

7.
定理经过正n边形(n>3)每一顶点的对角线长L_i=2Rsin i·180°/n,i=1,2,3,…,n-1(包括连结相邻顶点的线段)。证明:正n边形A_1A_2A_3…A_n如图1所示,设半径为R,L_1=A_1A_2=2R sin180°/n; △A_1A_2A_3中,由正弦定理得A_1A_3/sinA_2  相似文献   

8.
当 n 个正变数之和为定值时,求它们之积的最大值的问题,常用著名的均值不等式(I)解.(x_1 x_2 …… x_n)/n≥(其中x_i(i=1,2,…,n)是正数,当且仅当 x_1=x_2=…=x_n 时等号成立.)(Ⅰ)但应用不等式(Ⅰ)求最大值时,有时还需要一些技巧,利用巧妙变形才能找到和的定值,  相似文献   

9.
本文利用正投影的概念将点到直线与点到平面的距离公式统一起来并作推了广。我们证明了:Ⅰ 设O≠δ=(a_1,a_2,…,a_n)∈R~n,则R~n中的点(y_1,y_2,…,y_n)到R~n的子空间W={x_1,x_2,…,x_n)∈R~n|sum from i=1 n(a_ix_i=0}的距离为|sum from i=1 n(a_iy_i)/(sum from i=1 na_i~2)~(1/2);Ⅱ 设O≠δ=(a_1,a_2,…,a_n,…)∈l~2,则l~2中的点(y_1,y_2,…,y_n,…)到l_2的子空间W={(x_1,x_2,…,x_n,…)∈l~2|sum from n=1 ∝(a_nx_n)}的距离为|sum from n=1 ∝(a_ny_n)|/(sum from n=1 ∝a_n~2)~(1/2)。  相似文献   

10.
杨之先生在文[1]末给出了一个颇为有趣的猜想:任意凸n(n≥3)边形AlA2…An边上任意一点P,记PA1 PA2 … PAn=Z(P),Z(P)取最大值时的点P为凸n边形的最大点,则P点是它的最小值的顶点.  相似文献   

11.
设椭圆的参数方程为 0≤t≤2π。a>b>0。(1)又设A_1A_2…A_n为(1)的内接n边形,其中顶点A_1的坐标为A_i(acost_i,bsint_i),i=1,2,…n,其中t_1任意,t_2=t_1+(2π/n),t_3=t_2+(2π/n),…,t_(n+1)=t_n+(2π/n)(t_(n+1)=t_1+2π)。  相似文献   

12.
从本世纪中期开始,人们曾极有兴趣地讨论过循环不等式(x_1/x_2 x_3) (x_2/x_3 x_4) … (x_(n-1)/x_n x_1) (x_n/x_1 x_2)≥n/2 (1)是否成立的问题.其中 n≥3,x_1(i:1,2,…,n)非负,且所有分母为正(即 x_1 x_(1 1)>0,此时 x_(n 1)=x_1).为了讨论方便,记(1)式左端为 f_n(x_1,…,x_n).  相似文献   

13.
本文介绍不等式∏≥2~n-2n,并且说明它的一些简单运用。定理设整数 x_1≥2,i=1,2,…,n,那么∏≥2~n-2n.i=1 i=1证明不失一般性,令 x_1≥x_2≥…≥x_n.对 n 用数学归纳法。当 n=2时,x_1·x_2-(x_1+x_2)=x_1(x_2-1)  相似文献   

14.
(2 0 0 3- 0 9- 2 7—0 9- 2 8,乌鲁木齐)第一天1.将1,2 ,3,4 ,5 ,6 ,7,8分别放在正方体的八个顶点上,使得每一个面上的任意三个数之和均不小于10 .求每一个面上四个数之和的最小值.2 .设2n个实数a1,a2 ,…,a2n满足条件∑2n -1i=1(ai 1-ai) 2 =1.求(an 1 an 2 … a2n) - (a1 a2 … an)的最大值.3.设n为给定的正整数.求最小的正整数un,满足:对每一个正整数d ,任意un 个连续的正奇数中能被d整除的数的个数不少于奇数1,3,5 ,…,2n - 1中能被d整除的数的个数.4 .证明:若凸四边形ABCD内任意一点P到边AB、BC、CD、DA的距离之和为定值…  相似文献   

15.
定理 设A_1A_2…A_5是凸五边形,记A_iA_(i 1)=a_i,A_iA_(i 2)=m_i(i=1,2,…,5约定A_6=A_1,A_7=A_2),则 sum from i=1 to 5m_i~2相似文献   

16.
文[1]获得如下二个推广的不等式:推广1:已知m,m∈N~ ,且m,n≥2,a_i,b_i,x_i∈(0, ∞),(i=1,2,…,n)且a_1x_1 a_2x_2 … a_nx_m=S,求u=b_1x_1~m b_2x_2~m … b_nx_n~m的最小值.结论:u的最小值为  相似文献   

17.
定理1 过正n边形A_0A_1A_2…A_(n-1)的中心O任作一直线1与直线A_iA_(i+1)交于B_(i+1)(i=0,1,2,…,n-1,定义A_n=A_0),则sum from i=1 to m(1/OB_i~2)为定值。 证明 直线1一般情况仅能与正n边形A_0A_1A_2…A_(n-1)的两条边相交,而与其它(n-2)条边的延长线相交,不失一般性,我们没直线1与线段A_0A_1的延长线交于B_1(B_1也可以为无穷远点)。 1~0若n为偶数,则可设n=2m(m∈N)。由于正2m边形是以O为对称中心的中心对称图形,我们只要证明sum from i=1 to m(1/OB_i~2)壶为定值就可以了。  相似文献   

18.
零点分段法是以函数的零点为分点将其定义域分成若干个使其定号的集合的方法。它在处理某些有关绝对值的问题、解某些不等式、研究某些函数的单调性等问题时是一个有效的工具。本文谈谈这个方法及其依据,并举例说明它的一些应用。 定理:如果f(x)是区间Ⅰ上的连续函数(区间Ⅰ可以是开的、闭的或半开的),且它只有n个零点x_1相似文献   

19.
代数部分 1.(俄罗斯)本届IMO第2题。 2.(瑞典)设a,b是非负整数,且满足ab≥c~2,其中c是整数。证明:存在数n,及整数x_1,x_2,…,x_n;y_1,y_2,…,y_n,使得 sum from i=1 to n(x_i~2)=a,sum from i=1 to n(y_i~2)=b,sum from i=1 to n(x_iy_i)=c。 证明 将上述问题简记为(a,b,c)。易知,命题对于(a,b,c)成立的充分必要条件是对于(a,b,-c)  相似文献   

20.
设A1x1+A2x2+…+Anxn=S(Ai不全为零,i=1,2,…,n),则成立不等式:x_1~2+x_2~2+…+x_n~2≥S2/A_1~2+A_2~2+…+A_n~2当且仅当x1/A1=x2/A2=…=xn/An时等号成立. 证明记A_1~2+A_2~2+…+A_n~2=M,由基本不等式xi~2+(Ai~2)S2/M2≥2|S|/M|Aixi|≥Aixi 2S/M,从而 xi~2≥Aixi 2S/M-A_i~2 S2/M2(i=1,2,…,n),将以上n个同向不等式相加.得  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号