首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、复数 1.数_称为虚数单位。 2.i的幂有周期性,所以_=1、 =1、=i、=-i。 3.1 i i~2 … i~(50)_。 4.复数Z的代数形式是_、三角形 式是_。 5.复数Z=a bi(其中a、b都为实数)中a叫做_、bi叫做_、b叫做_;Z表示实数需满足_,Z表示0需满足_且_,Z表示虚数需满足_,Z表示纯虚数需满足_且_。 6.两个复数Z=a bi、Z_1=c di ,Z=Z_1的条件是_和_。 7.如果两个复数都是_,可以比较大小,如果_,就不能比较大小。 8.在复平面上x轴称为_,y轴称为_,原点O在_上,它表示_。 9.两个互为共轭复数Z与的实部 _,虚部_;Z =,Z-= ,Z·=,=。 10.复数Z=a bi可以用复平面以 _为起点,点_为终点的向量来表示,向量的_叫做这个向量的模。 11.复数Z=a bi(a≠0)的幅角θ可用公式_求得,模可用公式_求得。两个共轭复数的模_。 12.Z=a bi化成r(cosθ iSinθ)来表示,其中模r=_,幅角θ有公式cos=_,sinθ=_。 13.复数幅角θ的主值取_,在电  相似文献   

2.
求复数1+cosθ+isinθ(0<θ<π/2)的辐角主值的习题,很多同学见到这样的题,只能用三角公式去“凑”,若将符号进行一些变化,用这种方法不但很费时,而且也容易出错。下面介绍一种简便的方法,供参考。求复数Z=1+cosθ+isinθ(0<θ相似文献   

3.
任意一个复数z=a bi(a、b∈R)都与复平面内以原点O为始点,复数z在复平面内的对应点Z为终点的向量一一对应.复数的辐角是以x轴的正半轴为始边,向量OZ所在的射线(起点是O)为终边的角θ.任  相似文献   

4.
两个复数的和、差的辐角,课本中没有提及。本文要研究的是两个模相等的复数的差的辐角与各复数的辐角的关系,首先给一个定理。 定理 设模相等的两个非零复数z_1、z_2的辐角分别是θ_1、θ_2,z=θ_1-θ_2,辐角为θ。 (1)若cosθ_1-cosθ_2≠0,则tgθ=-ctg(1/2)(θ_1 θ_2)  相似文献   

5.
本文以实例来说明求复数辐角主值最值的四种常用方法,供读者参考. 1 三角法 先利用复数的三角式z=r(cosθ+isinθ)(r>0,0≤θ<2π)及其它,把复数模化成三角函数形式或把复数转化成构造相关三角函数,再用三角知识推理、计算出所求辐角主值的最值.三角法的实质是把复数问题化成三角问题求解.  相似文献   

6.
复数辐角主值问题是复数中的重点内容 ,也是高考命题的热点 .但是复数辐角主值问题又是考生容易出错的内容 .下面给出复数辐角主值问题的三种基本处理方法 ,以便大家对复数辐角及其主值有个深刻的认识 ,同时掌握处理复数辐角主值问题的基本策略 ,提高解题能力 .一、利用复数辐角主值的定义求解将复数z化为z=a bi(a ,b∈R)的形式 ,由tgθ=ba(a≠ 0 )及θ∈ [0 ,2π)求出θ=argz;或将复数z化为z =cosθ isinθ(θ∈[0 ,2π)的形式 ,则θ=argz .例 1  (’93上海 )设z=cos75 π isin75 π ,i是虚数单位…  相似文献   

7.
看下面一题的证明过程: 命题已知-1≤x≤1,求证:arcsinx+arccosx=π/2。 证明:令arcsinx=arg(a+bi)(a、b不全为零),则arccosx=arg(b+ai),而(a+bi)·(b+ai)=(a2+b2)i是一个纯虚数,…它的辐角arg(a+bi)+arg(b+ai)=π/2,即:arcsix+arccosx=π/2  相似文献   

8.
复数的应用极其广泛,本文拟就复数在证明三角恒等式中的应用作一介绍。复数 Z 的模用 r 表示,幅角用θ表示,这里 r≥0,0≤θ≤2π.每一个不等于零的复数Z 与有序实数对(r,θ)一一对应;当 Z=0时,规定 r=0,θ不确定。我们知道,每一个复数 Z 都可以表示成三角形式;反过来,三角函数也可用复数表示出来。例如:设  相似文献   

9.
徐兆强 《河西学院学报》2007,23(2):10-11,35
论述了Argz+Argz=2Argz是不成立的等几个关于复数辐角的有趣问题,指出了一个常用文献中的失误.  相似文献   

10.
辐角是复数中个重要的概念,也一直是高考中频繁考查的内容之一,与代数、三角、几何都有着密切的联系,能比较好地考查学生的综合能力.求解时所用方法也很基本.常用的方法:(1)若θ是复数z=a+bi(a,6∈R)的辐角,则tanθ=b/a(a≠O),且θ与点(a,b)所在象限一致(或  相似文献   

11.
本文取材于六年制重点中学高中数学课本代数第二册,5.6节“复数的三角形式”,第212页至第215页。课前予先要求学生复习以前学过的三角诱导公式和回忆反正弦函数和反余弦函数的主值范围,一堂课按下面四个内容顺序进行,逐一展开,一气呵成。 1.带着下列问题看书自学(20分钟) (1)什么叫做复数a+bi的模和辐角?(2)什么叫做辐角的主值  相似文献   

12.
复数的三角形式,在高中数学复数一章中,占有重要位置。正确的掌握复数三角形式的特点以及复数的代数形式化成复数三角形式,既是教学中的重点,也是教学中的难点。 复数的三角形式,依据是复数的几何意义和三角函数的定义,是“形”“数”结合的产物。正确的将复数的代数形式表示成三角形式,关键是求复数的辐角主值。 一、复数三角形式中辐角主值的求法。 教材中,对复数的一般代数形式转化为三角形式辐角主值的求法。采用sinθ=b/r,cosθ=a/r共同确定。每个正弦值或余弦值对应的角度都可能落在两个象限内,同时满足sinθ=b/r和cosθ=a/r且在0~2π范围内的角度,才是辐角主值θ。使用这种方法,三角知识掌握不透彻的学生,是很难求出辐角主值θ的。下文,紧扣辐角主值定义,充分利用复平面与三角函数知识,给出一个求复数辐角主值的方法。  相似文献   

13.
我们知道,与复数z=a+bi相对应的向量OZ的长度r,叫做复数z的模,记作r=|z|=|a+bi|;在实数中,数轴上表示实数的点与原点的距离叫做实数a的绝对值,记作|a|. 两者的表示符号相同.实数的绝对值是复数的模的特例,复数的模是实数的绝对值的扩展,只  相似文献   

14.
复数具有代数形式、三角形式、指数形式等多种表述方式,所蕴含的实际意义是以新的视角、新的途径沟通了代数、三角和几何等内容之间的联系,由此,该知识点是高校自主招生考试(也是高考与数学竞赛)的一个重要内容. 1复数知识 1.1 复数的表示形式与运算 代数形式:z=a+bi(a、b∈R); 三角形式: z=r(cosθ+i sinθ)(r≥0,θ∈R); 指数形式:z=reiθ(r≥0,θ∈R). 例1 设复数 ω1=-1/2+√3/2i, ω2 =cos2π/5+isin2π/5. 令ω=ω1ω2.则复数 ω+ω2+…+ω2011=(______). (2011,复旦大学自主招生考试) 解 显然,ω1=e 2πi/3,ω2 =e2πi/5. 则ω=ω1ω2=e16πi/15. 故ω+ω2+…+ω2011=ω(1-ω2011)/1-ω 而ω2011=ω2010·ω=ω,于是, ω+ω2+…+ω2011 =ω.  相似文献   

15.
我们知道 ,复数z1、z2 的辐角主值argz1与argz2 之和一般不等于z1z2 的辐角主值arg(z1z2 ) .但由复数乘法的几何意义可知 ,角argz1+argz2 的终边与角arg(z1z2 )的终边是相同的 ,而且 0 ≤argz1、argz2 、arg(z1z2 ) <2π ,故存在整数k=0或 1,使得argz1+argz2 =arg(z1z2 ) + 2kπ(k=0或 1) .(1)同样地 ,由复数除法的几何意义可知 ,存在整数k=0或 - 1,使得argz1-argz2 =arg(z1z2 ) + 2kπ(k=0或 - 1) .(2 )值得注意的是 ,公式 (1)、(2 )是复数乘 (除 )法的几何意…  相似文献   

16.
复数的三角式r(cosθ+isinθ)是用一对有序实数r、θ确定复数Z及其在复平面上的对应点(r≥0,0≤θ<2π).在平面极坐标系中,也是用一对有序实数p、θ(p≥0,0≤θ<2π)来确定点的位置,而且化成直角坐标后x=p·cosθ,y=p·sinθ恰与复数的实部、虚部的系数类同.于是,有些复数问题,在某种条件下,应用极坐标法解更为简  相似文献   

17.
两个向量夹角的定义:已知非零向量a与b,作^→OA=a,^→OB=b,则∠AOB=θ(0&#176;≤θ≤180&#176;)叫做向量a与b的夹角.两个向量的数量积定义:两个非零向量a与b的夹角为θ,我们把|a|b|cosθ叫做a与b的数量积,记作a&#183;b=|a|b|cosθ.  相似文献   

18.
复数z=a+bi=re~(iθ)=γ(cosθ+isinθ)取实值的充要条件为b=0;或=z,或γ及Sinθ中有一为0。灵活运用这些充要条件可以解决某种类型的复数在何时方能取到实值的问题。因为它从一个方面揭示了实数与复数之间的联系,所以有着不少的应用。如在证明代数基本  相似文献   

19.
许多同学在解复数问题时,就迫不及待地设复数z=a bi(a、b∈R)或z=r(cosθ isinθ(r≥0,θ∈[0,2π]且规定r=0时,r=0),至使某些问题越化越繁,甚至半途而废.而与之相反,若能从整体结构出发,合理利用复数的一系列固有的特殊性质,往往可以使问题不设而解,且过程甚为简捷;现以高考复数试题为例,予以说明.  相似文献   

20.
几乎所有的数学复习资料和习题集中,都有这样一类习题:“对于任意实数a,…”,“若…对于任意实代入上式得f(-x)=f(x). 故f(x)为奇函数. 例7.设a、b、A、B∈R,且 f(θ)=1-asinθ-bcosβ-Asin2θ-Bcos2θ, 若对于所有的实数θ恒有f(θ)≥0,求证: A~3+B~2≤1,a~2+b~2≤2. 证明,引入辅助角α、β,使得a/r=cosα,b/r=sina,A/R=cosβ,B/R=sinτ,其中r=(a~2+b~2)~(1/2),R=(A~2+B~2)~(1/2).则由f(θ)≥0得1-rsin(θ+α)-Rsin(2θ+β)≥0.(1) 由于(1)式对任何实数θ都成立,则对于π+θ也成立.即1-rsin(π+θ+α)-Rsin(2x+2θ+β)≥0. 即1+rsin(θ+α)-Rsin(2θ+β)≥0.(2) (1)+(2)得2-2Rsin(2θ+β)≥0.(3) 由于(3)式对任何实数日亦成立,则对于2θ+β=π/2也成立,即2—2R≥0. ∴ R≤1,即(A~2+B~2)≤1,故A~+B~2≤1. 用同样的方法可证a~2+b~2≤2(略). 四、求导法如果关于任意变量的解析式恒等于一个常数,就可以对这个恒等式两边求导,然后利用零解析式的特性求其他的条件变量. 例8.sin~2θ+sin~2(θ+α)+sin~2(θ+β)=3/2对任意的实数θ都成立,求α、β的值(0≤α<β≤π). 解:题设等式两边对口求导得 sin2θ+sin[2(θ+α)]+sin[2(θ+β)]≡0, 即(1+cos2α+cos2β)sin2θ+(sin2α+sin2β)cos2θ≡0, 由此得解得α=π/3,β=(2π)/3。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号