首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
由正弦定理出发,我们可以得到如下定理:△ABC中,以sinA、SinB、sinC为边可以构造△A′B′C′。且△ABC∽A′B′C′,△A′B′C′外接圆直径为1。证明:设△ABC外接圆半径为R, sinA+sinB=1/2R (a+b)>1/2R·C=sinC。同理可证 sinA+sinC>sinB,sinB+sinC>sinA。因此以sinA、sinB、sinC为边可以构造△A′B′C′。由正弦定理 a/sinA=b/sinB=c/sinC,因此△ABC∽△A′B′C′,则A=A′,B=B′,C=C′。设△A′B′C′外接圆半径为R′,对△A′B′C′施行正弦定理,则sinA/sinA′=2R′=1。由这个定理出发,有下面的二个应用。一、关于三角形中一些恒等式和不等式的互证  相似文献   

2.
大家熟知的余弦定理是: △ABC中,AB=c,BC=a,CA=b则有a~2=b~2+c~2-2bccosA (1) 又由正弦定理:a=2RsinA,b=2RsinB,C=2RsinC(2R为△ABC外接圆直径)代入(1)得:  相似文献   

3.
文 [1 ]给出了如下平面几何公式 :r =r1+r2 -2r1r2h .其中 ,P为△ABC的BC边上一点 ,h为BC边上的高 ,r ,r1,r2 分别为△ABC、△ABP和△ACP内切圆半径 .我们得到定理 设P为△ABC的边BC上一点 ,h为BC上的高 ,R ,R1,R2 分别为△ABC、△ABP、△ACP的外接圆半径 ,CA =b ,AB =c ,则R =(b +c) (bR1+cR2 )4h(R1+R2 ) . ( )证明 :由正弦定理 ,AP =2R1sinB =2R2 sinC ,设BC =a而sinB =b2R,sinC =c2R,因此R1+R2 =AP2 ( 1sinB+1sinC) =R(b +c)bc ·AP=R(b+c) sinAah ·AP=R(b+c)· AP2Rh=b +c2h (R1sinB +R2 sinC)=b +…  相似文献   

4.
定理 设△DEF为锐角△ABC的垂足三角形 ,BC =a ,CA =b ,AB =c,△AEF、△BDF、△CDE的外接圆分别为⊙O1(R1)、⊙O2 (R2 )、⊙O3(R3) ,则有aR1 bR2 cR3≥ 63 .证明 :由于B、C、E、F共圆 ,∠AEF =∠B ,∠AFE =∠C ,从而△AEF∽△ABC(如图 ) . ∴ EFBC=AEAB=cosA , ∴EF =acosA .同理 DF =bcosB ,DE =ccosC .由正弦定理得EF =2R1sinA .∴acosA =2R1sinA ,从而aR1=2tanA .同理 bR2=2tanB ,cR3=2tanC .由于△ABC为锐角三角形 ,tanA >0 ,tanB >0 ,tanC >0 ,∴ tanA tanB tanC33≥tanAtanBtanC=tanA ta…  相似文献   

5.
定理 设△ ABC的内心为 I,R,R1 ,R2 ,R3 分别是△ABC,△IBC,△ICA,△IAB的外接圆半径 ,则有R1 +R2 +R3 ≤ 3R,(1)R1 · R2 · R3 ≤ R3 . (2 )当且仅当△ ABC为正三角形时 ,(1)、(2 )取图 1等号 .证明 如图1,设 BC=a,CA=b,AB =c,因 I是△ABC的内心 ,则有sin∠ BIC=sin(180°- B+C2 ) =cos A2 .(3)由正弦定理及 (3)式可得R1 =a2 sin∠ BIC=2 Rsin A2 cos A2=2 Rsin A2 .同理可得R2 =2 Rsin B2 ,R3 =2 Rsin C2 .结合熟知的三角不等式sin A2 +sin B2 +sin C2 ≤ 32 及sin A2 sin B2 sin C2 ≤ 18,可得R1 +R2 +R…  相似文献   

6.
设△ABC的三边为a、b、c,对角分别是A、B、C,则有a/sinA=B/sinB=c/sinC=2R,其中R为△ABC的外接圆半径,这就是正弦定理,运用正弦定理,证平面几何题,常具有思路清楚,过程简单,少作或不作辅助线等优点,下面举例说明,  相似文献   

7.
众所周知 ,在△ ABC中 ,A,B,C为三个内角 ,a,b,c为对应三边 ,R为△ABC的外接圆半径 ,则有正弦定理  asin A=bsin B=csin C=2 R.正弦定理是揭示三角形的边、角及外接圆半径之间数量关系的一个重要定理 .灵活运用正弦定理解几何题 ,往往可以避免因添设辅助线所带来的困难 ,而且在许多情况下 ,能使证明思路自然 ,解法简捷明快 .使用正弦定理 ,应注意它的变形 :(1) ab=sin Asin B,bc=sin Bsin C,ca=sin Csin A.这表明 ,通过正弦定理 ,可实现边长之比与角的正弦之比的相互转化 ,从而将边的关系转化为角的关系用三角知识来解决 ,或者是将…  相似文献   

8.
同学们都熟知,在△ABC中,A、B、C为三个内角,a,b,c为三边,R为△ABC的外接圆半径,则有正弦定理 a/sinA=b/sinB=c/sinC=2R 正弦定理它是揭示三角形的边、角及外接圆半径之间数量关系的一个重要定理.灵活运用正弦定理解几何题,往往可以避免因添设辅助线所带来的困难,而且在许多情况下,能使证明思路清晰,解法简捷明快.  相似文献   

9.
正弦定理和余弦定理是架起三角形边角关系的两座桥梁,是解三角形的两个有力武器,锐不可当.重点难点1.正弦定理:a/(sinA)=b/(sinB)=c/(sinC)=2R(R表示△ABC外接圆的半径).2余弦定理:a~2=b~2+c~2-2bccosA;b~2=c~2+a~2-2cacosB:c~2=a~2+b~2-2abcosC.3.三角形面积公式:S=1/2ah_a(h_a  相似文献   

10.
正弦定理和余弦定理是解三角形的两个重要定理 ,也是竞赛中重点考查的内容之一 .本文浅谈由这两个定理联袂推出的结论及在竞赛中的应用 .在△ABC中 ,若 a,b,c分别是角 A,B,C的对边 ,由正弦定理可得 a=2 Rsin A,b=2 Rsin B,c=2 Rsin C(R为△ ABC的外接圆半径 ) ,代入余弦定理中 ,可得到它们的联袂结论 :sin2 A=sin2 B sin2 C- 2 sin Bsin Ccos A;sin2 B=sin2 A sin2 C- 2 sin Asin Ccos B;sin2 C=sin2 A sin2 B- 2 sin Asin Bcos C.同时还可以证明当 A B C=kπ(k为奇数 ) ,以上结论也成立 .1 给角求值例 1 求 cos2 73…  相似文献   

11.
定理是解题的重要工具,本文介绍一个定理及其应用。定理在△ABC中,有 sin~2C=sin~2A+sin~2B—2sinAsinBcosC。证明在△ABC中,由余弦定理: c~2=a~2+b~2-2abcosC及正弦定理:a=2RsinA,b=2RsinB,c=2RsinC,可得 sin~2C=sin~2A+sin~2B-2sinAsinBcosC。  相似文献   

12.
正弦定理、余弦定理都是解三角形的重要工具,但它们的作用有所不同,若能综合运用这2个定理,则能灵活解题,现举例说明.1求三角形的内角例1△ABC中,sin2A=sin2B sinB.sinC sin2C,求A的大小.解由正弦定理,得sinA=2aR,sinB=2bR,sinC=2cR,代入正知等式有a24R2=4bR22 4bRc2 4cR22,而a  相似文献   

13.
众所周知,相似三角形有不少重要的性质,如相似三角形对应边成比例、对应角相等,等等。然而相似三角形还有一个非常重要的性质却常被人们忽视,即 性质1 相似三角形的相似比等于它们的外接圆(内切圆)的半径之比。 其证明由正弦定理不难得到。 下面略举数例,说明上述性质的应用。 例1 如图,两圆相交于A、B两点,且半径之比为r:R=1:2,AC,AD分别与⊙O_1、⊙O_2相切于点A,求AC/AD及S_(△ABC)/S_(△ABD)之值. 解:∵∠1=∠D,∠2=∠c,∴△ABC∽△ABD.由性质得 AC/AD=r/R=1/2,  相似文献   

14.
一、应用正弦定理判定【例1】已知在△ABC中,sin2A+sin2B=sin2C,求证△ABC是直角三角形.证明:由正弦定理sinA=2aR,sinB=2bR,sinC=2cR,代入sin2A+sin2B=sin2C中,得4aR22+4bR22=4cR22,∴a2+b2=c2,故△ABC是直角三角形.二、应用余弦定理判定【例2】在△ABC中,A、B、C所对的边分别为a、b、c,a≠b,且a·cosA=b·cosB.判定△ABC的形状.解:α·cosA=b·cosB,由余弦定理得α·b2+2cb2c-a2=b·a2+2ca2c-b2,化简整理得(a2-b2)(c2-a2-b2)=0,∵a≠b,∴a2+b2=c2,故△ABC是直角三角形.三、应用根的判别式判定【例3】若a、b、c为△ABC的…  相似文献   

15.
由正弦定理 a/(sin A)=b/(sin B)=c/(sin C)=2R(R为外接圆半径)很容易得出以下几个推论: 推论1:如果两个三角形有一个角相等或互补,那么它们外接圆半径的比等于这两个等角或补角的对边比。即在△ABC和△A′B′C′中,若A=A′或A A′=180°则R/R′=a/a′。  相似文献   

16.
定理 在△ABC中 ,D、E、F和X、Y、Z分别为边BC、CA、AB上的中点和高的垂足 ,ZD与FX交于L ,ZE与FY交于M ,DY与XE交于N ,则L、M、N三点都在△ABC的欧拉线上 (图 1 ) .证明 :如图 2 ,设O、H分别为△ABC的外心和垂心 ,我们来证明L在OH上 ,设△ABC外接圆半径为R ,设直线ZC、FX交于P ,连结OF、HL、OL .因OF⊥AB ,PZ⊥AB ,OF∥PZ ,∠OFL =∠P ,F为Rt△AXB斜边AB的中点 ,FX =FB ,∠B =∠BXF =∠CXP ,∠P =∠PZF -∠ZFP =90°-2∠B .在△CPX中 ,应用正弦定理 .可算出PC =XCsin∠CXPsinP =CHcos∠HCX…  相似文献   

17.
半单位圆     
我们称半径等于1/2的圆为半单位圆,它显然有如下性质:(1)设△ABC内接于半单位圆,由正弦定理立得a=sinA,b=sinB,c=sinC。  相似文献   

18.
1问题的起源笔者在解答学生的疑惑中遇到如下问题:问题在△ABC中,边长a=2,A=60°,求△ABC面积的最大值.问题本身叙述简单明了,图形简洁明快,解决方案也朴实常规,S=1/2bcsinA,要求面积的最大值,只需考虑bc的最大值即可.思路1由正弦定理  相似文献   

19.
关于垂足三角形外接圆半径之间有下面一个恒等式:定理设△DEF是锐角△ABC的垂足三角形,且BC=a,CA=b,AB=c,△ABC的面积,外接圆半径,内切圆半径分别为?,R,r,若△AEF,△BDF,△CDE的外接圆半径依次为R A,BR,RC,则cot cot cotA2B2C2R A+R B+RC2(R r)r=??.(1)证明如图,由文[1]知EF=a cos A,FD=b cos B,DE=c cos C,∵A2sinREF=A cos2sina A=A2sin cos,R A A=A H D AE BFC∴R A=R cos A.同理RB=R cos B,RC=R cos C.令cot cot cot,A2B2C2K=R A+R B+RC在△ABC中应用常见恒等式:?=rs,cot2422∑A=s?R?r?r,csc2422…  相似文献   

20.
在△ABC中,正弦定理可以写成:a/sinA=b/sinB=c/sinC=2R(R为外接圆半径),这个关系不仅揭示了三角形的边角关系,而且也表明了圆中的弦和所张圆周角之间的关系,因此利用正弦定理,我们既可以解三角形,又可以将三角形中边的关系及角的关系相互转化来证明几何问题。为了实现快速转化,请大家一定要熟练掌握正弦定理的如下变换形式:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号