首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一元二次方程ax2+bx+c=0(a≠0),当有一个根是“1”时,根据方程根的定义得a+b+c=0,反之,如果a+b+c=0时,方程的根又分别是什么呢?证明:∵a+b+c=0∴b=-a-c则ax2+bx+c=0变为ax2+(-a-c)x+c=0可分解为(ax-c)(x-1)=0解得:x1=1x2=ac也就是方程ax2+bx+c=0(a≠0)中,当a+b+c=0时,有一个根是1,另一个根是c/a,借这个特殊性质来巧解题。1、巧求一元二次方程的两个根例1解关于x的方程:mx2-(m-n)x-n=0(m≠0)解:∵m-(m-n)-n=0∴x1=1x2=-(mn).2、巧求代数式的值已知:一元二次方程(ab-2b)x2+2(b-a)x+2a-ab=0有两个相等的实数根,求1a+1b的值。解:方程(ab-2b)x2+2…  相似文献   

2.
<正> 性质在一元二次方程ax2+bx+c=0(a≠0)中,若a+b+c=0,则该方程必有一根为1. 证明∵a+b+C=0,且a≠0,∴a=-(b+C). ∴ax2+bx+c=-(b+c)x2+bx+C =-bx2-cx2+bx+c  相似文献   

3.
在一元二次方程ax2+bx+c=0(a≠0)中,常常隐含着a+b+c=0,此时方程的根究竟有什么特征呢?下面我们来研究这个问题。首先,为了能更清楚地看到方程与系数的关系,我们可以先由a+b+c=0,得b=-(a+c),代入方程消去b,得ax2-(a+c)x+c=0,ax(x-1)-c(x-1)=0,(x-1)(ax-c)=0,哈,原来方程的两根为x1=1,x2=ca。由此,我们得到如下一个结论:当a+b+c=0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的一根为1,另一根为ca。运用这个简单的结论解决一些相关的问题十分简洁。请看:例1解方程:穴3姨-2雪x2+穴1-3姨-2姨雪x+2姨+1=0分析:直接用解一元二次方程的方法求解显然很…  相似文献   

4.
当a+b+c=0时     
我们知道,一元二次方程ax~2+bx+c=0(a≠0)的实数根,在b~2-4ac≥0时,可由求根公式求得。 现在,我们来探究一个问题,当a+b+c=0时,一元二次方程ax~2+bx+c=0(a≠0)的根有什么特点? 探究 ∵ a+b+c=0,∴b=-(a+c),∴ 原方程可化为ax~2-(a+c)x+c=0,即 (ax~2-ax)-(cx-c)=0. ∴ ax(x-1)-c(x-1)=0. ∴(x-1)(ax-c)=0. ∴ X_1=1,X_2=c/a。  相似文献   

5.
性质1 若a+b+c=0,则方程ax2+bx+c=0有一个根是1. 证明:∵a+b+c=0,∴c=-(a+b).∴ax2+bx-(a+b)=0.∴(x-1)(ax+a+b)=0.∴x=1或x=-1-b/a.  相似文献   

6.
△ =b2 - 4ac叫做一元二次方程 ax2 + bx+ c=0(a≠ 0 )的根的判别式。灵活应用它 ,不仅可以解答一些与一元二次方程有关的问题 ,一些非一元二次方程问题也可获得巧妙解答。一、与一元二次方程有关的问题例 1 若方程 x2 - (a- 3) x- 3a- b2 =0有两个等根 ,则方程 x2 + ax+ b=0的两根分别是 (   )(A) 0 ,3;(B) 0 ,- 3;(C) 1,4 ;(D) 1。解 :由方程 x2 - (a- 3) x- 3a- b2 =0有两个等根 ,∴△ =(a- 3) 2 - 4(- 3a- b2 ) - 0 ,∴ (a+ 3) 2 + 4 b2 =0。∵ (a+ 3) 2≥ 0 ,4 b2≥ 0 ,∴ a=- 3,b=0。这时 ,要求的方程即为 x2 - 3x=0∴ x1=0 ,x2 …  相似文献   

7.
如果一元二次方程ax2 bx c=0(a≠0)的两个根是x1,x2,那么x1 x2=-ba;x1x2=ca.这就是著名的韦达定理.根据韦达定理,可得出以下两个推论.推论1设x1,x2是一元二次方程ax2 bx c=0(a≠0)的两根,则x1-x2=Δ姨a,其中Δ=b2-4ac.利用韦达定理很容易证明推论1.推论2如果一元二次方程ax2 bx c=0(a≠0)的两根之比为k,则kb2=(1 k)2ac.证明:设x1,x2是方程ax2 bx c=0(a≠0)的两个实数根,则x1x2=k,x1 x2=-ba,x1x2=ca .消去方程组中的x1和x2,得kb2=(1 k)2ac. 下面谈谈以上两个推论的应用.例1已知开口向下的抛物线y=ax2 bx c与x轴交于M、N两点(…  相似文献   

8.
陈宝义  李培华 《初中生》2015,(36):26-27
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)和一元二次方程ax2+bx+c=0有着密切的联系.对于二次函数或一元二次方程问题,我们依据题目的特征,灵活处理,则能使某些问题得到简捷、巧妙的解决. 抛物线y=ax2+bx+c与x轴的交点、一元二次方程ax2+bx+c=0的根、判别式△=b2-4ac的符号关系如下表: 一、求方程的根 例1(2014年柳州卷)小兰画了y=x2+ax+b的图像如图1所示,则关于x的方程x2+ax+b =0的解是().  相似文献   

9.
一、明确一元二次方程的真实涵义“只含有一个未知数 ,并且未知数的最高次数是 2的整式方程叫做一元二次方程。”要正确理解这一概念 ,必须明确以下几点 :1.方程两边都是整式 ;2 .方程只含有一个未知数 ;3.在满足 1、2的前提条件下 ,方程经整理可化为 ax2 bx c=0 (a≠ 0 )的一般形式。因此 ,凡指方程 ax2 bx c= 0是一元二次方程 ,必有 a≠ 0 ;反之 ,只有当 a≠ 0时 ,方程 ax2 bx c=0才是一元二次方程。例 1.关于 x、y的方程 :(1)x2 - 1x2 =0 ;(2 ) (x 3) (x- 1) =x2 ;(3) (2 x 1) (2 x- 1) =x;(4 )x2 xy- 4 =0 ;(5 ) x2 - mx(2 x-m - 1)…  相似文献   

10.
在解或判别实系数一元二次方程(或可化为此类方程)时,根的判别式Δ=b2-4ac起着极大的作用.实系数二次函数y=ax2+bx+c(a≠0)有很多性质,其中当且仅当Δ=b2-4ac≤0时,y=ax2+bx+c保号.如果在实系数二次函数y=ax2+bx+c(a≠0)中,将系数a,b,c都改为对某些变量的实质函数,就可得到“广义判别式”的概念.即:设a=f(x,y),b=g(x,y),c=φ(x,y)都是以x,y为未知数的一个二元方程,则称Δ=b2-4ac为二元方程ax2+bx+c=0的“广义判别式”.1利用“广义判别式”可判断二元实函数系数方程根的情况实系数一元二次函数y=ax2+bx+c(a≠0)的保号性可以推广到关于x,y的二…  相似文献   

11.
这是一堂关于函数表达式的习题课,教学对象是高一学生.问题:已知f(2x+1)=x2-2x,求f(x)与f(2x-1)的解析式.学生解法:设f(x)=ax2+bx+c(a≠0),则f(2x+1)=4ax2+(4a+2b)x+a+b+c=x2-2x.易得4a=1,4a+2b=-2,a+b+c=0,解得a=14,b=-32,c=54,所以f(x)=14x2-32x+54,f(2x-1)=x2-4x+3.师:为什么可以"设f(x)=ax2+bx+c(a≠0)"?生1:因为可以推测f(x)一定是二次函数.如果f(x)不是二次函数,则f(2x+1)的解析式也不会是二  相似文献   

12.
●第一步关注一元二次方程一般形式ax2 bx c=0(a≠0)中“a≠0”的条件.“a≠0”是一元二次方程一般形式的重要组成部分,只有当a≠0时方程ax2 bx c=0才是一元二次方程.例1下列方程(1)ax2 bx c=0,(2)k2 5k 5=0,(3)(m-3)x2-x-1=0,(4)(m2 3)x2 樤3x-2=0是关于x的一元二次方程的是(只填序号).【分析】(1)、(3)不一定是一元二次方程,应分别添加条件a≠0,m≠3才行;(2)不是关于x的一元二次方程;(4)m2 3>0,是一元二次方程.答案:(4).例2已知关于x的方程(m 樤3)x2-1 2(m-1)x-1=0,m应取何值使方程为一元二次方程或是一元一次方程.【分析】此题要根据一…  相似文献   

13.
对于实数系一元二次方程 ax2 +bx+c=0 (a≠ 0 ) ,如果 b2 - 4ac>0 ,那么方程有两个不相等的实数根 ;b2 - 4ac<0 ,那么方程没有实数根 .这就是一元二次方程根的判别式定理 ,我们把△ =b2 - 4ac叫做方程 ax2+bx+c=0 (a≠ 0 )的判别式 .这个定理的逆命题也是成立的 .判别式定理揭示了一元二次方程的系数与它的根之间的内在联系 ,它的应用主要有以下几个方面 .1 .判断方程根的性质 .在初中阶段我们研究的是实数系数的一元二次方程 ,有下列命题 :(1 )一元二次方程 ax2 +bx+c=0 (a≠ 0 )中 ,如果 a、 b、 c是有理数且△ =b2 - 4ac是一个完全平方数…  相似文献   

14.
在一元二次方程ax2+bx+c=0(a≠0、a、b、c为常数)中,当x=1时,a十b+c=0;反过来,当a+b+c=0时,就有x=1是方程ax2+bx+c=0的一个根. 由此类推到:如果am2+bm+c=0,an2+bn+c=0,且m≠n那么就知道m、n是一元  相似文献   

15.
一元二次方程ax2+bx+c=0(a≠0)根的判别式Δ=b2-4ac是初中数学的一个重要知识点,本文结合例题,说说应用一元二次方程根的判别式(以下简称判别式)解题时需注意的几点.一、使用判别式的条件方程ax2+bx+c=0(a≠0)的a≠0是使用判别式的前提条件.例1 关于x的一元二次方程k2x2-(2k+1)x+1=0有两个实数根,求k的取值范围.分析:根据题设条件,可知Δ=[-(2k+1)]2-4k2≥0且k2≠0,解得k≥-14且k≠0. 二、方程有两个实数根与方程有实数根区别方程ax2+bx+c=0有两个实数根,则必有≠0;但方程ax2+bx+c=0有实数根,则它可有两个实数根,也可能有一个实数根,…  相似文献   

16.
有许多竞赛题,如果用一元二次方程来解,往往会收到奇妙的效果.现举例说明. 例l 已知x1,x2是方程ax2+bx+c=0(a≠0)的两个根,且S1=x1 +x2,S2 =x12+x22,S3=x13 +x23,求aS3+bS2+cS1的值,(广东奥林匹克寒假集训试题) 解;因为x1,x2是方程ax2 +bx +c =0(a≠0)的两个根 所以:ax12+bx1+c=0 ax22+bx2+c=0 则:ax13 +bx12 +cx1 =0 ax23+bx22 +cx2 =0 所以:两式相加得:a(x13 +x23)+b(x12 +x22)+c(x1+x2)=0 即:aS3 +bS2 +cS1 =0.  相似文献   

17.
正一元二次方程以及二次函数是九年级的重要内容,它们之间联系紧密。我现对它们的关系加以总结、归纳,来帮助学生学习和复习。二次函数通用解析式为:y=ax2+bx+c(a、b、c为常数,a≠0),一元二次方程一般形式为ax2+bx+c=0(a、b、c为常数,a≠0),单从形成上看就很像。当二次函数的值为零时,也就是说求解二次函数与x轴交点问题时,可转化为一元二次方程来解决。一、一元二次方程ax2+bx+c=0的根就是二次函数y=ax2+bx+c图像与x轴的交点1.△0时,方程有两个不相等的实数根x1、x2,二次函数与x轴有两个不同的交点,其  相似文献   

18.
一元二次方程是中学数学的重要内容 ,因此 ,有关一元二次方程的问题一直受到各级各类竞赛的青睐 .本文通过一些不同形式的例题 ,介绍解答一元二次方程公共根问题的基本策略 .1 消去二次项例 1 若两个方程 x2 +ax+b=0和 x2+bx+a=0只有一个公共根 ,则 (  ) .(A) a=b     (B) a+b=0(C) a+b=1(D) a+b=- 1(2 0 0 2年江苏省初中数学竞赛题 )解 设两方程的公共根为 x0 ,则x20 +ax0 +b=0 ,x20 +bx0 +a=0 .121- 2 ,得 (a- b) (x0 - 1) =0 .∵两方程只有一个公共根 ,∴ a≠ b.从而x0 =1为两方程的公共根 ,代入 1,得 1+a+b= 0 ,即 a+b=- 1,选…  相似文献   

19.
在一元二次方程ax2 +bx +c =0(a≠0)中,若两根为x1、x2,则x1+x2=-b/4,x1·x2=c/a,根与系数的这种关系又称为韦达定理.它的逆定理同样成立,即当x1+x2=b/a,x1·x2=c/a时,那么x1、x2是ax2 +bx +c=0(a≠0)的两根. 一元二次方程的根与系数的关系,综合性强,应用极为广泛. 一、确定符合条件的方程 例1 (2012年烟台卷)下列一元二次方程两实数根的和为-4的是().  相似文献   

20.
<正> 性质若a+b+c=0,则x=1是关于x的一元二次方程ax2+bx+c=0的根;若a-b+c=0,则x=-1是关于x的一元二次方程ax2+bx+c=0的根. 运用一元二次方程的根的定义不难证明这一性质.而灵活运用  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号