首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
<正>对于二次函数f(x)=ax2+bx+c(a≠0)若有根x1,x2,则可写成零点式f(x)=a(x-x1)(x-x2)(a≠0).同理对一个三次函数f(x)=ax3+bx2+cx+d(a≠0)若有根x1,x2,x3,则可写成零点式f(x)=a(x-x1)(x-x2)(x-x3)(a≠0),其应用广泛,下面简单讨论其应用.1巧证不等式  相似文献   

2.
三次函数f(x)=ax3 bx2 cx d(a≠0)已经成为中学阶段一个重要的函数.本文给出并证明三次函数的三个性质,并例说性质的应用.函数f(x)=ax3 bx2 cx d(a≠0)的导函数为f/(x)=3ax2 2bx c.导函数的对应方程为f/(x)=0即3ax2 2bx c=0,其判别式Δ=4(b2-3ac).若Δ>0,设其两根为x1、x2,并设x1相似文献   

3.
有许多竞赛题,如果用一元二次方程来解,往往会收到奇妙的效果.现举例说明. 例l 已知x1,x2是方程ax2+bx+c=0(a≠0)的两个根,且S1=x1 +x2,S2 =x12+x22,S3=x13 +x23,求aS3+bS2+cS1的值,(广东奥林匹克寒假集训试题) 解;因为x1,x2是方程ax2 +bx +c =0(a≠0)的两个根 所以:ax12+bx1+c=0 ax22+bx2+c=0 则:ax13 +bx12 +cx1 =0 ax23+bx22 +cx2 =0 所以:两式相加得:a(x13 +x23)+b(x12 +x22)+c(x1+x2)=0 即:aS3 +bS2 +cS1 =0.  相似文献   

4.
三次函数的一般形式为f(x)=ax3+bx2+cx+d(a≠0,a,b,c,d是常数),其导函数为f′(x)=3ax2+2bx+c,判别式为Δ=4b2-12ac,则函数f(x)的图像为如下几种情形:  相似文献   

5.
运用导数研究函数的单调性、极值、最值以及证明不等式,是一种可行性强、操作性简单的方法.一、求函数的解析式【例1】 设y = f(x)为三次函数,且图像关于原点对称,当 x =12时的极小值为-1,求函数f(x)的解析式.解析:设f(x)= ax3 bx2 cx d(a≠0),因为其图像关于原点对称.即f(- x) =- f(x)得ax3 bx2 cx d= ax3 - bx2 cx - d(x∈R),∴b =0,d =0,即f(x) = ax3 cx,由f′(x) =3ax2 c,依题意f′(12) =34a c =0,f(12) =18a c2=-1解之,得a =4,c =-3.故所求函数的解析式为 f(x) = 4x3 -3x.二、求函数的单调区间【例2】 求函数f(x…  相似文献   

6.
由于三次函数f(x)=ax3+bx2+cx+d(a>0)的导数是二次函数,二次函数是高中数学中的重要内容,所以三次函数的问题已成为高考命题的一个新的热点和亮点.1三次函数的性质1.1三次函数的单调性因为f′(x)=3ax2+2bx+c,所以方程f′(x)=0中,Δ=4b2-12ac=4(b2-3ac),于是:(1)当b2-3ac>0时,方程f′(x)=0有两个不同的实数根x1,x2(不妨设x1相似文献   

7.
近几年随着导数进入高中教材,以三次函数为背景的题目经常出现在全国各地的高考试题中.但对于三次函数的性质学生了解并不多,教材中也没加以说明,这也影响了他们有效解决这类问题的途径和方法.我们知道二次函数图象的直观明了大大帮助了学生对函数性质的理解和掌握.本文将研究三次函f(x)=ax3 bx2 cx d(a>0)的图象与性质.三次函数f(x)=ax3 bx2 cx d(a>0x∈R),则f'(x)=3ax2 2bx c.f'(x)=6ax 2b=6a(x b/(3a)),当a>0,?=4b2?12ac>0时,f'(x)=0有两个根为213,3xb b aca=???x2=?b 3ba2?3ac,f'(x)=0的根为x0=?b/(3a).(1)当(,23]3xb b aca∈?∞???…  相似文献   

8.
正引理(1)若函数y=f(x)在定义域D上可导,且a∈D,则函数y=f(x)的图象关于点(a,f(a))对称 函数y=f'(x)的图象关于直线x=a对称;(2)三次函数f(x)=ax3+bx2+cx+d(a≠0)的图象Γ关于点A(-b/3a,f(-b/3a))对称  相似文献   

9.
内容概述二次函数的解析式由条件确定二次函数的解析式需要三个独立的条件,一般有如下三种特定形式:1.一般式y=ax2+bx+c(a≠0)2.顶点式y=a(x-m)2+h(a≠0)3.分解式y=a(x-x1)(x-x2)(a≠0)二次函数的最值对二次函数f(x)=ax2+bx+c(a≠0)若自变量x为任意实数,其最值情况为:当a>0,x=-b/2a,fmin=4ac-b2/4a;当a<0,x=-b/2a,fmax=4ac-b2/4a.若自变量x在范围x1≤x≤x2上取值时,其最值情况为:对a>0,有如下结论:  相似文献   

10.
设三次函数f(x)=ax3+bx2+cx+d(a≠0),其导函数f'(x)=3ax2+2bx+c的判别式为△=4ab2-12ac,则有以下性质。1.△≤0时,三次函数f(x)在R上是单调函数。(1)当△≤0且a>0时,函数f(x)在R上单调递增。(2)当△≤0且a<0时,函数f(x)在R上单调递减。它们的图象如下图1、2。例说三次函数图象性质的应用$昆明三中@张邦宁  相似文献   

11.
一元三次函数f(x) =ax3+bx2 +cx+d的图象可分为两类 :一类是在整个定义域内是单调的 ,无极值 ,其形状与 f(x) =±x3类似 .另一类是在整个定义域内有 3个单调区间(两增一减或两减一增 ) ,必有一个极大值和一个极小值 .具体分析如下 :设方程 f′(x) =3ax2 + 2bx +c =0的判别式为Δ ,Δ >0时方程的两实根记为x1 ,x2 (x1 0 ,Δ >0时 ,函数的单调增区间为 (-∞ ,x1 ) ,(x2 ,+∞ ) ,单调减区间为[x1 ,x2 ] ,在x1 处取得极大值 ,在x2 处取得极小值 .图象如图 1,呈倒“S” .(2 )当a >0 ,Δ≤ 0时 ,函数在 (-∞ ,+∞ )上单调递增 ,无…  相似文献   

12.
《代数》第三册第37页中有一结论:若x1、x2是一元二次方程ax2+bx+fc=0的两根,则有ax2+bx+c=a(x-x1)(x-x2).正用或逆用这一结论解题,具有简捷明快、耳目一新的特点.以下从几个方面挖掘其解题功能. 一、分解因式例1 (1997年太原市初中数学竞赛题)在  相似文献   

13.
一、基础知识“若实数x1、x2是方程ax2+bx+c=0(a≠0)的两个根,则x1+x2=-b/a,x1x2=c/a”,这一关系称之为韦达定理;其逆定理是:“若实数x1,x2满足x1+x2=-b/a,x1x2=c/a,则x1,x2是方程ax2+bx+c=a(a≠0)的两个根”,韦达定理及其逆定理在各类数学竞赛中具有广泛的应用,下面举例加以说明:二、应用举例1.用于求方程中参系数的值例1 设m是不小于-1的实数,使得关于x的方程x2+2(m-2)x+m2-3m+3=0有两个不相等  相似文献   

14.
大家知道,如果x1,x2(x1≠x2)是方程ax2 bx c=0(a≠0)的两个根,则有ax12 bx1 C=0,ax22 bx2 c=0. 反之,若ax12 bx1十c=0,ax22 bx2 c=0,x1≠x2,则x1,x2是方程ax2 bx c=0(a≠0)的两个根.  相似文献   

15.
本刊2005年第9期文[1]给出了三次函数y=ax3 bx2 cx d(a>0)的图象及性质,并用此解决有关三次函数的问题,读后颇受启发,但觉意犹未尽.本文利用三次函数的图象解决三次方程根的问题.文[1]给出的三次函数f(x)=ax3 bx2 cx d(a>0)的图象是:?>0?≤0(1)(2)其中2133x=?b?ba?ac,2233x=?b ba?ac,x0=?b/(3a),x1、x2分别为极大、小值点,x0为拐点.其实,三次函数f(x)的图象不止这两种,我们把其余的四种情形补充如下:?>0?>0(3)(4)?>0?>0(5)(6)由以上图象可以看出,当∵?>0时,f(x1)>f(x2).由以上图象还可以看出,当且仅当三次函数y=f(x)的图象与x轴有唯一交点(…  相似文献   

16.
以三次函数为载体的试题,可综合考察导数、函数、方程、不等式等知识,是近年高考的一个亮点,为此,本文特别介绍三次函数的四种图象类型及应用. 1.三次函数的四种图象类型 对于三次函数 f(x)=ax3 bx2 cx d(a≠0),  相似文献   

17.
设三次函数为f(x)=ax3 bx2 cx d(a≠0),其导函数f′(x)=3ax2 2bx c的判别式为△=4b2-12ac则有以下性质:1.当△≤0时,三次函数(fx)在R上是单调函数;(1)当△≤0且a>0时;函数f(x)在R上单调递增,(2)当△≤0且a<0时;函数f(x)在R上单调递减。它们的图像形如下图:2.当△>0时,三次函数f  相似文献   

18.
三次函数图象的对称性是高考的热点问题,任何一个三次函数f(x)=ax3+bx2+cx+d(a≠0)都有“拐点”(-b/3a,f(-b/3a)),且“拐点”就是对称中心;对称中心在导函数y=f′(x)的对称轴上;若三次函数y=f(x)的两个极值点为x1,x2,设P(x1,f(x1)),Q(x2,f(x2)),则三次函数f(x)的对称中心是线段PQ的中点;通过引申更得出具有对称中心的单调函数的重要性质.这些性质在高考中广泛的应用.  相似文献   

19.
文[1]利用导数研究了三次函数y=f(x)=ax3+bx2+cx+d(n,b,C,d均为常数,且a≠0)的图象的对称中心.本文将直接利用图形的对称中心的性质来研究三次函数y=f(x)=ax3+bx2+cx+d(a,b,C,d均为常数,且a≠0)的图象C是否具有几何对称中心以及在存在对称中心的情况下如何求其对称中心M点的坐标.  相似文献   

20.
人教版初中《代数》第三册给出了一个重要的代数恒等式:ax2+bx+c=a(x-x1)(x-x2),其中x1,x2是二次方程ax2+bx+c=0的两个根,也是二次函数y=ax2+bx+c与x轴两个交点的横坐标.巧妙地运用这一恒等式解题可使解题思路明显,过程简捷.下面以若干竞赛题为例说明这一恒等式的应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号