首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

2.
关于因式分解的常用方法,中学课本中已作了介绍。本文要探讨的是根据题目的特征,运用比较特殊的方法,进行因式分解的问题。例1 在复域内分解: (x+1)(x+2)(x+3)(x+6)-3x~2 解原式=(x~2+7x+6)(x~2+5x+6)-3x~2推敲上式的特征,可知若令y=x~2+6x+6,原式就化为: (y+x)(y-x)-3x~2 =y~2-4x~2=(y+2x)(y-2x) =(x~2+8x+6)(x~+4x+6) =(x+4-10~(1/2))(x+4+10~(1/2)) (x+2-(2~(1/2))i)(x+2-(2~(1/2))i) 例2分解:(ab+1)(a+1)(b+1)+ab 解原式即(ab+1)[ab+1+a+b]+ab,若令(ab+1)=A,可得: 原式=A(A+a+b)+ab =A~2+(a+b)A+ab=(A+a)(A+b)  相似文献   

3.
因式分解是初中代数的重要内容之一,它的解法变化多样,为帮助同学们学好这部分内容,本文以课本中的有关题目为例,说明常见变换技巧,供参考和选用.一、指数变换例1分解因式xn+1-3xn+2xn-1解:以指数最低的xn-1为标准,把xn+1、xn分别变换为x2·xn-1、x·xn-1,则原式=xn-1(x2-3x+2)=xn-1(x-1)(x-2)二、符号变换例2分解因式(a-b)(x-y)-(b-a)(x+y)解:将-(b-a)变换为a-b,则原式=(a-b)(x-y+x+y)=2(a-b)x三、部分项分解变换例3分解因式x2-6x+9-y2解:原式=(x-3)2-y2=(x+y+3)(x-y-3)四、系数变换例4分解因式81+3x3解:将3提取后便于运用立方和公式分解原…  相似文献   

4.
因式分解的方法较多,同学们除了牢固掌握课本上介绍的提公因式法,运用公式法,分组分解法和十字相乘法四种基本方法外,还可以学习如下几种变换技巧.一、拆项变换例1分解因式:3x3+7x2-4.分析:先将7x2拆成两个同类项3x2和4x2,然后再用分组分解法分解.解:原式=(3x3+3x2)+(4x2-4)=3x2(x+1)+4(x2-1)=3x2(x+1)+4(x+1)(x-1)=(x+1)(3x2+4x-4)=(x+1)(x+2)(3x-2)二、添项变换例2分解因式:x4+y4+(x+y)4.分析:此式是关于x、y的对称式,故可通过添项把原式化为仅含x+y和xy的式子.解:原式=x4+2x2y2+y4-2x2y2+(x+y)4=(x2+y2)2-2x2y2+(x+y)4=[(x+y)2-2xy]2-2x2…  相似文献   

5.
有条件限制的双变元取值问题,涉及领域宽,知识面广,需要善于转化,可以通过消元转化为函数求值域问题,但是当题目具有一定特殊形式对,也可通过另外两种常用方法转化.一、消元变函数例1 已知3x~2+2y~2=6x,求 u=x~2+y~2的取值范围.分析:为了求出 u 的范围,需将变量 x,y 用一个变量 x 表示出 u,此时要注意 x 的范围.解:由3x~2+2y~2=6x,得y~2=(1/2)(6x-3x~2)∵y~2≥0,∴x∈[0,2]u=x~2+y~2=x~2+(1/2)(6x-3x~2)=-(1/2)(x-3)~2+(9/2)结合二次函数的图象可知,u∈[0,4]  相似文献   

6.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

7.
配方法是初中数学里的一种重要的思想方法,有广泛的应用.本文以近年中考试题为例,将其应用归纳如下.一、因式分解例1(2010年芜湖市)因式分解9x~2-y~2-4y-4=____.解:原式=9x~2-(y~2+4y+4)=(3x)~2-(y+2)~2=(3x+y+2)(3x-y-2)  相似文献   

8.
一、配方法例1分解因式:2x3-x2z-4x2y+2xyz+2xy2-y2z解:原式=(2x3-4x2y+2xy2)-(x2z-2xyz+y2z)=2x(x2-2xy+y2)-z(x2-2xy+y2)=(x2-2xy+y2)(2x-z)=(x-y)2(2x-z)·二、拆项法例2分解因式:x3-3x+2·解:原式=x3-3x-1+3=(x3-1)-(3x-3)=(x-1)(x2+x+1)-3(x-1)=(x-1)(x2+x-2)·注:本题是通过拆常数项分解的,还可通过拆一次项或拆三次项分解,读者不妨一试·三、添项法例3分解因式:x5+x+1·解:原式=(x5-x2)+x2+x+1=x2(x3-1)+(x2+x+1)=x2(x-1)(x2+x+1)+(x2+x+1)=(x2+x+1)(x3-x2+1)·四、主元法例4分解因式:2a2-b2-ab+bc+2ac·解:以a为主元,将原式整理成关…  相似文献   

9.
对于含多个字母的因式分解题,大多数学生都不知如何下手求解,在此,本人给出一种比较实用的方法,那就是以题中某个字母为主元,其他字母看成是常数,这样将多元问题变为一元问题,问题便轻易解决,下面举例说明.例1分解因式2x~2-5xy+2y~2+7x-5y+3.解:视x为未知元,变形,则有:原式=2x~2+(7-5y)x+(2y~2-5y+3)=2x~2+(7-5y)x+(y-1)(2y-3)=[2x-(y-1)][x-(2y-3)]  相似文献   

10.
把一个多项式化成几个整式的积的形式,叫做因式分解.正确理解因式分解的概念是学好因式分解的前提,要注意因式分解的"五忌".1.忌部分分解例1分解因式:x~2-y~2-z~2-2yz.错解原式=(x+y)(x-y)-z(z+2y).分析错在只是分解了原式的某些部分.正解原式=x~2-(y~2+z~2+2yz) =x~2-(y+x)~2=(x+y+z)(x-y-z).  相似文献   

11.
例1、计算(x-1)/(x~2-3x+2)+(x+1)/(x-2)-(x~2-x-6)/(x~2-4) 解:原式=(x-1)/[(x-1)(x-2)]+(x+1)/(x-2)[(x-3)(x+2)]/[(x+2)(x-2)]=1/(x-2)+(x+1)/(x-2)-(x-3)/(x-2)=[1+(x+1)-(x-3)]/(x-2)=5/(x-2) 说明:本题看起来是异分母的分式相加减,但把两个较复杂的公式的分子、分母分解因式后,约去公因式,就变简单了,且是同分母的分式相加减。若不这样做,则会异常繁杂。  相似文献   

12.
1.若(z-x)~2-4(x-y)(y-z)=0, 求证:x,y,z成等差数列。 [证一] (z-x)~2-4(x-y)(y-z) =z~2-2zx+x~2+4zx-4xy-4yz+4y~2 =(x+z)~2-2·2y(z+x)+4y =(z+x-2y)~2 =0,  相似文献   

13.
平均值法是数学中常用的解题方法,本文拟介绍平均值法在分解因式中的应用,这往往是许多教师容易忽略的。例1 分解因式(x~2-2x)(x~2-2x-2)-3。解:x~2-2x与x~2-2x-2的平均值为M=x~2-2x-1。∴原式=(M+1)(M-1)-3=M~2-4=(M+2)(M-2)=(x~2-2x+1)(x~2-2x-3)=(x-1)~2(x+1)(x-3)。例2 分解因式 4(x+5)(x+6)(x+10)(x+12)-3x~2。  相似文献   

14.
多元函数最值问题不仅蕴含了丰富的数学思想和方法,而且有利于培养学生联想、化归的解题能力,下面通过例题介绍几种求这类最值问题的方法。一、配方法例1:求函数 f(x,y)=x~2-2xy 6y~2-14x-6y 72的最小值。解:f(x,y)=x~2-2xy 6y~2-14x-6y 72=(x-y-7)~2 5(y-2)~2 3≥3因此当 x-y-7-y-2=0即x=9,y=2时,f(x,y)的最小值为3  相似文献   

15.
乘乘法公式是由形式特殊的多项式相乘总结出来的规律,共有两种:1.平方差公式(a+b)(a-b)=a2-b2.2.完全平方公式(1)完全平方(和)公式(a+b)2=a2+2ab+b2.(2)完全平方(差)公式(a-b)2=a2-2ab+b2.利用乘法公式进行计算可大大提高运算速度,它的应用非常广泛.下面举例说明乘法公式的巧妙运用.一、巧换位置例1计算(-3t+4)2.解:原式=(4-3t)2=16-24t+9t2.二、巧变符号例2计算(-2a-3)2.解:原式=[-(2a+3)]2=(2a+3)2=4a2+12a+9.三、巧变系数例3计算(2x+6y)(4x+12y).解:原式=2(x+3y).4(x+3y)=8(x+3y)2=8(x2+6xy+9y2)=8x2+48xy+72y2.四、巧变指数例4计算(a+1)…  相似文献   

16.
早在初中代数课上,就已经知道了两数和的平方公式 (x y)~2=x~2 2xy y~2(1)、这一公式的应用是极其广泛的。在这里,我们介绍它的部分应用。 一、推证公式问题 以下乘法公式 (x-y)~2=x~2-2xy y~2 (x y)(x-y)=x~2-y~2 (x y)~3=x~3 3x~2y 3xy~2 y~3 (x-y)~3=x~3-3x~2y 3xy~2-y~3 (x-y)(x~2 xy y~2)=x~3-y~3 (x y)(x~2-xy y~2)=X~3 y~3等都可运用公式(1)来推导 例1、求证:(x y)(x-y)=x~2=y~2 证:令a=(x y)/2,b=(x-y)/2, 则两数x、y的平方差,x~2-y~2=(a b)~2-(a-b)~2运用公式(1)有x~2-y~2=4ab据假设条件,得x~2-y~2=4(x y)/2·(x-y)/2,即x~2-y~2=(x y)(x-y) 例2、求证:(x-y)~3=x~3-3x~2y 3xy~2-y~3 证:将上式右端进行配方变换即得证 x~3-3x~2y 3xy~2-y~3 =x~3-2x~2y xy~2-x~2y 2xy~2-y~3 =x(x-y)~2-y(x-y)~2 =(x-y)~3 类似地,乘法公式都可用公式(1)来推导,此外,还可推证一些多项因式的乘法  相似文献   

17.
例1.分解因式:x~2-4y~2。 解 x~2-4y~2=(x 2y)(x-2y) =x~2-4y~2。 剖析 本已分解,却又用整式乘法“还原”,这是初学者常犯的错误,问题在于不懂得因式分解的意义。  相似文献   

18.
在本文,将介绍因式分解中的一个小规律。就是:在一个待分解的多项式中,选定其中一个最低次的字母,按这个字母进行降幂排列,然后依该字母分解因式。现举例说明:例1 分解因式x~3-2ax~2+2x-4a.分析:式中x为三次,a为一次,故依最低次的a进行降幂排列。解:原式=(-2ax~2-4a)+(x~3+2x)=-2a(x~2+2)+x(x~2+2)=(x~2+2)(x-2a)。例2 分解因式x~3-ax~2+a~2-2a+1。分析:式中x为三次,a为二次,依a进行降幂排  相似文献   

19.
错在哪里     
1.江苏省姜堰市第二中学 石志群(225500)题 已知两椭圆方程分别为:x~2 9y~广-45=0,x~2 9y~-6x-27=0,求过两椭圆的交点且与直线x-2y 11=0相切的圆的方程.(1984年高考题)解 设过两已知椭圆交点的圆的方程为:x~2 9y~2-6x-27 λ(x~2 9y~2 -45)=0.即 (1 λ)x~2 (9 9λ)y~2-6x-27-45λ=0,由x一2y 11=0得 x=2y-11,代入上式得(13 13λ)y~ 2-(56 44λ)y 160 76λ=0.当圆与直线相切时,有△=0,即(56 44λ)~2-4(13 13λ)(16O 76λ)=0.  相似文献   

20.
各已知渐近线方程 f_1(x)=0,f_2(x)=0而不知双曲线方程类型情况下,求双曲线方程可通过设方程为f_1(x)·f_2(x)=λ(λ≠0)来确定.例1 求以4x-3y=0,4x 3y=0为渐近线方程且过 P(4 (3~(1/2),8)的双曲线方程.解:渐近线方程可变为(4x-3y)(4x 3y)=16x~2-9y~2=0  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号