首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
一、配方法例 1 分解因式 :2 x3- x2 z- 4 x2 y 2 xyz 2 xy2- y2 z。解 :原式 =(2 x3- 4 x2 y 2 xy2 ) - (x2 z- 2 xyz y2 z) =2 x(x2 - 2 xy y2 ) - z(x2 - 2 xy y2 ) =(x2 -2 xy y2 ) (2 x- z) =(x- y) 2 (2 x- z)。二、拆项法例 2 分解因式 :x3- 3x 2。解 :原式 =x3- 3x- 1 3=(x3- 1 ) - (3x- 3)= (x- 1 ) (x2 x 1 ) - 3(x- 1 ) =(x- 1 ) 2 (x 2 )。注 :本题是通过拆常数项分解的 ,还可通过拆一次项或拆三次项分解 ,读者不妨一试。三、添项法例 3 分解因式 :x5 x 1。解 :原式 =(x5 - x2 ) x2 x 1 =x2 (x3- 1 ) (x2 x 1 ) =x2 (…  相似文献   

2.
因式分解的方法较多,同学们除了牢固掌握课本上介绍的提公因式法,运用公式法,分组分解法和十字相乘法四种基本方法外,还可以学习如下几种变换技巧.一、拆项变换例1分解因式:3x3+7x2-4.分析:先将7x2拆成两个同类项3x2和4x2,然后再用分组分解法分解.解:原式=(3x3+3x2)+(4x2-4)=3x2(x+1)+4(x2-1)=3x2(x+1)+4(x+1)(x-1)=(x+1)(3x2+4x-4)=(x+1)(x+2)(3x-2)二、添项变换例2分解因式:x4+y4+(x+y)4.分析:此式是关于x、y的对称式,故可通过添项把原式化为仅含x+y和xy的式子.解:原式=x4+2x2y2+y4-2x2y2+(x+y)4=(x2+y2)2-2x2y2+(x+y)4=[(x+y)2-2xy]2-2x2…  相似文献   

3.
对于比较复杂的多项式分解因式,运用换元法可使多项式中的数或式的关系明朗化,使问题化难为易、简洁清晰.例1 分解因式(x~2+x+3)(x~2-6x+3)+12x~2.解设 x~2+3=y,则原式=(y+z)(y-6x)+12x~2=y~2-5xy+6x~2=(y-2x)(y-3x)=(x~2-2x+3)(x~2-3x+3).例2 分解因式(x-1)(x-2)(x-3)(x-4)-120.解由于(x-1)(x-4)=x~2-5x+4,(x-2)(x-3)=x~2-5x+6,  相似文献   

4.
换元法是数学中的一个重要的思想方法。就是将代数式中的某一部分用一个新字母(元)来替换。此法用于多项式的因式分解,能使隐含的因式比较明朗地显示出来,从而为合理分组、运用公式等提供条件,使问题化难为易。例1分解因式(x2+xy+y2)2-4xy(x2+y2)。解:设x2+y2=a,xy=b,则原式=(a+b)2-4ab=(a-b)2=(x2-xy+y2)2。例2分解因式(x+y-2xy)(x+y-2)+(xy-1)2。解:设x+y=a,xy=b,则原式=(a-2b)(a-2)+(b-1)2=a2-2ab-2a+4b+b2-2b+1=(a-b)2-2(a-b)+1=(a-b-1)2=(x+y-xy-1)2=〔(1-y)(x-1)〕2=(y-1)2(x-1)2。例3分解因式(x2-4x+3)(x2-4x-12)+56。解:设x2-4x=y,…  相似文献   

5.
因式分解是初中代数的重要内容之一,它的解法变化多样,为帮助同学们学好这部分内容,本文以课本中的有关题目为例,说明常见变换技巧,供参考和选用.一、指数变换例1分解因式xn+1-3xn+2xn-1解:以指数最低的xn-1为标准,把xn+1、xn分别变换为x2·xn-1、x·xn-1,则原式=xn-1(x2-3x+2)=xn-1(x-1)(x-2)二、符号变换例2分解因式(a-b)(x-y)-(b-a)(x+y)解:将-(b-a)变换为a-b,则原式=(a-b)(x-y+x+y)=2(a-b)x三、部分项分解变换例3分解因式x2-6x+9-y2解:原式=(x-3)2-y2=(x+y+3)(x-y-3)四、系数变换例4分解因式81+3x3解:将3提取后便于运用立方和公式分解原…  相似文献   

6.
因式分解的方法多种多样,现将其中最常用的九种变换方法例析如下.一、符号变换法例1把x2(x-4) 5x(4-x) 6(x-4)分解因式.分析:将5x(4-x)变形为-5x(x-4),即可提公因式(x-4)进行分解.解:原式=x2(x-4)-5x(x-4) 6(x-4)=(x-4)(x2-5x 6)=(x-4)(x-3)(x-2).二、指数变换法例2把xn 1 2xn xn-1分解因式.分析:以x的最低次幂xn-1为标准,将xn 1变形为xn-1·x2,xn变形为xn-1·x,即可提公因式xn-1进行分解.解:原式=xn-1·x2 2xn-1·x xn-1=xn-1(x2 2x 1)=xn-1(x 1)2.三、组合变换法例3把x2-6x-4y2 12y分解因式.分析:将题中各因式分组整理,第一项和第三项分为…  相似文献   

7.
因式分解的方法很多 ,灵活性大 ,因此 ,同学们在牢固掌握课本上所介绍的 4种基本方法的基础上 ,还需掌握如下的一些技巧 .1 拆项、添项例 1 分解因式x2 y2 -x2 -y2 -4xy +1.分析 :本题难于直接应用 4种基本方法进行分解 .然而 ,经观察不难发现 ,只要将 -4xy拆成 ( -2xy -2xy) ,分组后 ,便可利用公式法分解 .解 :原式 =(x2 y2 -2xy +1) -(x2 +y2 +2xy)=(xy -1) 2 -(x +y) 2=(xy +x +y -1) (xy -x -y -1) .例 2 分解因式x4+4 .分析 :只须添上 4x2 和 -4x2 ,即可利用公式 .解 :x4+4 =x4+4x2 +4 -4x2=(x2 +2 ) 2 -( 2x) 2=(x2 +2x +2 ) (x2 -…  相似文献   

8.
换元是初中代数学习中非常重要的一种解题方法 ,它指的是在解题过程中有意识地把一个代数式看成一个整体 ,用字母表示。灵活地应用这种方法 ,可使解题简易、迅捷。一、分解因式例 1.分解因式 (x2 - x) 2 - 8x2 + 8x+ 12。解 :设 x2 - x=z,那么原式 =(x2 - x) 2 - 8(x2 - x) + 12=z2 - 8z+ 12 =(z- 2 ) (z- 6 )=(x2 - x- 2 ) (x2 - x- 6 )=(x- 2 ) (x+ 1) (x- 3) (x+ 2 )。二、化简二次根式例 2 .化简 x z - z xx z + z x-z x + x zz x - x z。解 :设 x =a,z =b,那么 x=a2 ,z=b2 。原式 =a2 b- ab2a2 b+ ab2 - ab2 + a2 bab2 - a2 b=a- ba+ b…  相似文献   

9.
平均值法是数学中常用的解题方法,本文拟介绍平均值法在分解因式中的应用,这往往是许多教师容易忽略的。例1 分解因式(x~2-2x)(x~2-2x-2)-3。解:x~2-2x与x~2-2x-2的平均值为M=x~2-2x-1。∴原式=(M+1)(M-1)-3=M~2-4=(M+2)(M-2)=(x~2-2x+1)(x~2-2x-3)=(x-1)~2(x+1)(x-3)。例2 分解因式 4(x+5)(x+6)(x+10)(x+12)-3x~2。  相似文献   

10.
一、拆项变换例 1 分解因式 :x3- 9x 8。解 :原式 =( x3- 1) ( - 9x 9) =( x- 1) ( x2 x 1) - 9( x- 1) =( x- 1) ( x2 x- 8)。注 :本题是通过将 8拆成 - 1和 9后 ,再用分组分解法分解 ;也可将 - 9x拆成 - x和 - 8x,或将x3拆成 9x3和 - 8x3分解。二、添项变换例 2 分解因式 :x4 y4 ( x y) 4。解 :原式 =x4 2 x2 y2 y4 -2 x2 y2 ( x y) 4=( x2 y2 ) 2 -2 x2 y2 ( x y) 4=〔( x y) 2 -2 xy〕2 - 2 x2 y2 ( x y) 4=2〔( x y) 4- 2 xy( x y) 2 x2 y2 〕=2〔( x y) 2 - xy〕2 =2 ( x2 xy y2 ) 2 。注 :本题是关于 x、y的对称式 ,…  相似文献   

11.
在分式运算中,常常要利用通分·若我们能细心观察、分析分式的结构特点,结合一定的通分技巧,往往可使运算简捷、准确·取得事半功倍的良好效果·一、整体处理后通分例1计算aa-31-a2-a-1·解:原式=aa-31-(a2+a+1)=a3-(a-a1)-(a12+a+1)=a3-a(a-31-1)=a-11·二、化积约分后通分例2计算x+2x3-3x-10-x2+x3-x2-10·解:原式=(x-5x)+(2x+2)-(x+5x)-(2x-2)=x1-5-x+15=10x2-25·三、分组结合后通分例3计算x-12+x2+1-x-21-x+12·解:原式=(x1-2-x1+2)+(x2+1-x-21)=4x2-4-x24-1=4(x2-1)-4(x2-4)(x2-4)(x2-1)=12x4-5x2+4·四、拆项相消后通分例4计算(x-11)…  相似文献   

12.
拆项是数学学习中重要的一种解题方法 ,它指的是将代数式中的某项有意识地变形成两项或多项的和。灵活地应用这种方法 ,可很好地利用有关的公式、定理和已知条件 ,从而使解题简便易行。一、用于有理数计算例 1.计算 9999× 9999+19999。解 :原式 =(9999× 9999+9999) +10 0 0 0=9999× (9999+1) +10 0 0 0=10 0 0 0× (9999+1)=10 0 0 0 0 0 0 0。二、用于分解因式例 2 .分解因式 x3 +2 x2 - 5 x- 6。解 :原式 =(x3 +2 x2 +x) - (6 x+6 )=x(x+1) 2 - 6 (x+1)=(x+1) (x- 2 ) (x+3)。例 3.分解因式 x4 +x2 +2 ax+1- a2 。解 :原式 =(x4 +2 x2 …  相似文献   

13.
因式分解是初中数学的重要内容之一。因式分解题目千变万化,方法灵活多样,现举几例供同学们参考。例1分解因式(x2-2xy+y2)+(-2x+2y)+1.分析:若此题展开,这太复杂了。通过观察题目特点可将原式变形为(x-y)2-2(x-y)+1这样就易于分解了。解:原式=(x-y)2-2(x-y)+1=[(x-y)-1]2=(x-y-1)2.例2分解因式(x+1)(x+2)+41.分析:此题既没有公因式,又没有公式直接可用。可以先用整式乘法,重新整理然后分解。解:原式=x2+3x+2+41=x2+3x+49=(x+23)2.例3分解因式32004-32003.分析:此题从表面上看无法解,但通过观察,可逆用同底数幂的乘法法则,将32004化为32003×…  相似文献   

14.
同学们在学习二次根式时,常会犯一些错误,现举例说明,供同学们参考. 1.化简x3+2x2y+xy2√. 错解:原式=x(x+y)2√=x+yx√. 分析:答案中根号外的x+y是一个整体,必须加括号. 正解:原式=x(x+y)2√=(x+y)x√. 2.把式子x-1x√中根号外的因式适当变形后移到根号内,并使原式的值不变. 错解:原式=x2√·-1x√=-x√. 分析:由公式a=a2√(a≥0)知,根号外的负因式要移进根号内且保持原式的值不变时,需在根号外添加一负号.如-4=-(-4)2√. 正解:由题意可知-1x>0,∴x<0. ∴原式=--x-1x√=-(-x2-1x √=--x√. 3.计算2√÷3√…  相似文献   

15.
分式运算经常涉及到通分 ,若能根据分式的结构特征 ,采取相应的通分方法和技巧 ,则不仅可驭繁为简、化难为易 ,而且可减少出错率 ,达到事半功倍之效。本文通过课本习题介绍分式通分的七种技巧。一、分解因式 ,约后通分例 1 .计算 :x2 2 xy y2x2 y xy2 - x2 - 2 xy y2x2 y- xy2 。解 :原式 =( x y) 2xy( x y) - ( x- y) 2xy( x- y)=x yxy - x- yxy=2 yxy=2x。二、通盘考虑 ,整体通分把题目中的多项式视为一个整体进行通分 ,比逐项通分计算量小、速度快。例 2 .计算 :x3x- 1- x2 - x- 1。解 :原式 =x3x- 1- ( x2 x 1)=x3 - ( x- 1) ( x2 x …  相似文献   

16.
一个不等式的初等证明   总被引:1,自引:0,他引:1  
文 [1]给出并用微分法证明了如下不等式 :已知 x,y,z∈ (0 ,+∞ ) ,且 x+ y+ z=1,则(1x- x) (1y- y) (1z- z)≥ (83 ) 3 . (1)受此启发 ,笔者经探索得出如下一个初等证明 .证明 由基本不等式易得xyz+ yzx≥ 2 y,yzx+ zxy≥ 2 z,zxy+ xyz≥2 x.将上述三个不等式相加得xyz+ yzx+ zxy≥ x+ y+ z=1. (2 )又由 1=x+ y+ z≥ 3 3 xyz,得 xyz≤12 7.∴ (1x- x) (1y- y) (1z- z) =1xyz· (1- x2 ) (1- y2 ) (1- z2 ) =1xyz[(1+ x) (1+ y)(1+ z) ][(1- x) (1- y) (1- z) ]=1xyz(2 +xy+ yz+ zx+ xyz) (xy+ yz+ zx- xyz) =2(1x+ 1y+ 1z) - 2 + (xy+ yz+…  相似文献   

17.
最值问题,也就是最大值和最小值问题.它是初中数学竞赛中的常见问题.这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度.本文以例介绍一些常见的求解方法,供读者参考.一、配方法例1(2005年全国初中数学联赛武汉CASIO杯选拔赛)2x2+4xy+5y2-4x+2y-5可取得的最小值为.解:原式=(x+2y)2+(x-2)2+(y+1)2·27·-10.由此可知,当x=2,y=-1时,有最小值-10.二、设参数法例2(《中等数学》奥林匹克训练题)已知实数x、y满足x3+y3=2.则x+y的最大值为.解:设x+y=k,易知k>0.由x3+y3=2,得(x+y)(x2-xy+y2)=2.从而,xy=13(k2-k2).由…  相似文献   

18.
猜想与实验是科学进步的阶梯,猜测与试探是数学解题取得进展的手段,对解题,我们首先要有积极乐观的心态,善于观察、敢于猜测、勤于试探,消极等待是不会成功的,猜了又猜,试了又试,才有希望逐步找到解法.例1分解因式x3-x2 x-6.猜想x3-x2 x-6=(x a)(x2 bx c).由于ac=-6,又可猜想a=±1,±2,±3,±6.如果a=1,就要试探原式是否有因式(x 1),而x3-x2 x-6=x2(x 1)-2x(x 1) 3(x-2),没有因式(x 1)!通过试探,可知(x-1),(x 2)也都不是原式的因式.让我们继续试探(x-2)是否是原式的因式:x3-x2 x-6=x2(x-2) x(x-2) 3(x-2),试探成功!所以,x3-x2 x-6=(x-2)(x2 …  相似文献   

19.
一、运用乘法公式例1化简x+2xy√+yx√+y√.分析:此题若分母有理化,较复杂,如运用完全平方公式先将分子分解,则非常简便.解:原式=(x√+y√)2x√+y√=x√+y√.二、运用乘法法则例2化简(3√+2√)1996·(3√-2√)1997.分析:本题逆用乘法法则中的同底数幂的乘法公式,可巧妙获解.解:原式=(3√+2√)1996·(3√-2√)1996·(3√-2√)=〔(3√+2√)·(3√-2√)〕1996·(3√-2√)=3√-2√.三、字母待定法例3化简7-48√√.分析:若化简此题,需把7-48√写成a2的形式,就可开方出来.解:设7-48√√=x√-y√,x>y>0.两边平方,得7-212√=x+y-2xy√,根据上式,得x+…  相似文献   

20.
解数学题,遇到形如x+y=2a的条件,可设x=a+k,y=a-k(k是参数),从而有效地解决许多类型的题,这就是均值换元,本文介绍用此法在解题中的应用。1、用于条件求值。例1若a+b=5,a3+b3=50,求a2+b2解:设a=52+k,b=52-k∴(52+k)3+(52-k)3=50,即(52+k+52-k)[(52+k)2-(52+k)(52-k)+(52-k)2]=50∴k2=54于是a2+b2=(52+k)2+(52-k)2=504+2k2=504+104=152、用于因式分解。例2分解因式(6x-1)(2x-1)(3x-1)(x-1)+x2解:设k=(6x-1)(x-1)+(2x-1)(3x-1)2=6x2-6x+1则原式=[(6x-1)(x-1)][(2x-1)(3x-1)]+x=(6x2-7x+1)(6x2-5x+1)+x2=(k-x)(k+x)+x2=k2=(6x2-6x+1)23、用于解…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号