首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
定理 二次函数 y =ax2 bx c的值域是[0 , ∞ )的充要条件是a>0且b2 - 4ac=0 .证明 因为 y =ax2 bx c =a(x b2a) 2 4ac-b24a ,x∈R ,所以二次函数y=ax2 bx c的值域是 [0 , ∞ ) y的最小值是 0 ,无最大值 a>0且b2 - 4ac=0 .下面举例说明定理的应用 .例 1 已知 f(x) =2x2 bx cx2 1(b <0 )的值域为[1,3] ,求实数b,c的值 .解 f(x)的定义域为R .由 1≤2x2 bx cx2 1≤ 3,得x2 bx c- 1≥0且x2 -bx 3-c≥ 0 .所以 f(x)的值域为 [1,3] y1=x2 bx c- 1和 …  相似文献   

2.
20 0 2年全国高考广东、河南卷第 2 2题 (压轴题 ) :已知a>0 ,函数 f(x) =ax-bx2 .(Ⅰ )当b >0时 ,若对任意x∈R都有 f(x) ≤1,证明 :a≤ 2b ;(Ⅱ )当b >1时 ,证明 :对任意x ∈ [0 ,1],|f(x) | ≤ 1的充要条件是b- 1≤a≤ 2 b ;(Ⅲ )当 0 1,…  相似文献   

3.
在闭区间上的二次函数的绝对值不等式的证明有一个通法 :将二次函数的系数用闭区间上的三个函数值 (一般用区间端点和中点的函数值 )来表示 ,然后借助于绝对值不等式来解决 .例 1 设a、b、c∈R ,f(x) =ax2 +bx +c(a≠ 0 ) .若 | f( 0 ) |≤ 1,|f( 1) |≤ 1,|f( - 1) |≤ 1,试证 :对任何x∈ [- 1,1] ,都有 |f(x) |≤ 54 .证明 :因f( 0 ) =c,f( 1) =a +b+c,f( - 1) =a-b +c,故解得a =f( 1) + f( - 1)2 - f( 0 ) ,b =f( 1) - f( - 1)2 ,c=f( 0 ) .∵  |x|≤ 1∴  | f(x) | =|ax2 +bx +c|=f( …  相似文献   

4.
欢迎您—2003     
一年一度的佳节———元旦 ,就要来临了 ,为了欢度节日 ,特为数学爱好者 ,提供一组结果均为 2 0 0 3的函数趣题以资助乐 .1 设对于函数 :f(x) =x +3x - 2 ,g(x) =ax +bx +c ,且有 f[g(x) ] =2 0 0 6x +42 0 0 1x - 1,试求a、b、c之值 .解 由题目条件得 :f[g(x) ] =g(x) +3g(x) - 2=ax +bx +c +3ax +bx +c - 2=(a +3)x +(b +3c)(a - 2 )x +(b - 2c) .由题设知(a +3)x +(b +3c)(a - 2 )x +(b - 2c) =2 0 0 6x +42 0 0 1x - 1,整理得 :( 5a - 10 0 15)x2 +( 5a +5b - 10 0 15c- …  相似文献   

5.
引例 己知a ,b ,c∈R ,f(x) =ax2 +bx+c,g(x) =ax+b ,当|x|≤ 1时 ,|f(x) |≤ 1,求证 :当|x|≤ 1时 ,| g(x)|≤ 2 .本例属于二次函数推理题 ,这类题目往往含有“对某区间上一切变量都有某条件成立”之类具有最值意义的条件 ,其特点是抽象程度高 ,考查综合、灵活运用有关知识分析解决问题的能力强 ,因此经常在高考或各级各类竞赛中出现 .解决此类问题的关键是 :对变量进行巧妙、合理地赋予一系列特殊的值 ,如区间的端点、中点、± 1、0及顶点等 ,然后把项的系数 (字母 )用这些函数值 (如 f(±1)、f(0 )等 )…  相似文献   

6.
擂台题 (5 4 ) :证明或否定若a、b、c为△ABC的三边长 ,实数λ≥ 2 ,则(b+c-a) λbλ+cλ +(c+a -b) λcλ+aλ +(a +b -c) λaλ+bλ ≥ 32①引理 若m、n∈R+ ,实数 p≥ 1 ,则(m +n2 ) p≤ mp+np2 ②证明  (1 )当 p =1时 ,②式等号成立 ,(2 )当 p >1时 ,令 f(x) =xp(x >0 ) ,这时 ,f′(x) =pxp- 1,f″(x) =p(p -1 )xp - 2 >0 ,所以 f(x)是 (0 ,+∞ )上的凹函数。因为m、n∈R+ ,由琴生不等式知f(m +n2 )≤ f(m) +f(n)2 ,即有 (m +n2 ) p≤ mp+np2 ,当且仅当m =n…  相似文献   

7.
一、选择题 (本大题共 1 2小题 ,每小题 5分 ,共60分 ,在每小题给出的 4个选项中 ,只有一项是符合题目要求的 )1 如果函数 y=ax2 +bx+a的图象与x轴有两个交点 ,则点 (a,b)在aOb平面上的区域 (不包含边界 )为 (   )2 抛物线 y=ax2 的准线方程是 y=2 ,则a的值为 (   )  (A) 18  (B) -18  (C) 8  (D) -83 已知x∈ -π2 ,0 ,cosx =45,则tan 2x=(   )  (A) 72 4  (B) -72 4  (C) 2 47  (D) -2 474 设函数 f(x) =2 -x-1 ,x ≤ 0 ,x1 2 ,  x >0 .若 f(x0 )>1 ,则x0 的取值范围是 (…  相似文献   

8.
根据欲证不等式的某些特点 ,引入适当的函数、数列、方程、图形等 .并利用它们的性质证明不等式的方法 ,称为构造法 .以下分别说明几种常见的构造对象 .一、二次函数对二次函数 f(x) =ax2 +bx+c(α≤x≤ β) ,若a >0 ,则 f(x) ≥ 0 Δ≤ 0 ;-b2a∈(α ,β)时max{ f(α) ,f( β) }≥ f(x) ≥f -b2a ;-b2a (α ,β)时 ,f(x)在 f(α)与f( β)之间 .利用f(x) ≥ 0 Δ ≤ 0证明不等式的方法也称为判别式法 .它的用法是 :当欲证之不等式呈现B2 ≤ ( ≥ )AC这样的与判别式类似的形式时 ,可考虑构造二次函数 ;…  相似文献   

9.
用函数方法证明不等式 ,常常能够方便地给出证明 .用函数方法证明不等式的关键是结合不等式的结构特征构造适当的函数 ,以便于利用这一函数的有关性质证明所给的不等式 .例 1 若a >b>0 ,m >0 .求证 :ab >a +mb+m.证明 令 f(x) =a+xb +x.由a>b可设a =b+c(c >0 ) ,则f(x) =b+x +cb +x =1+cb +x.当x∈ (0 ,+∞ )时 ,f(x)为减函数 .∵ m >0 ,∴ f(m) <f(0 ) .即 ab >a+mb+m.注 用函数方法证明不等式 ,往往要利用所构造函数的单调性 .例 2 设a、b、c∈R .证明 :a2 +ac+c2 +3b(a+b+…  相似文献   

10.
1 求证 :sin2 0 0 3° >12 ·cos2 0 0 2°。  (不要使用计算器等工具。)2 试求出两条抛物线 y2 =2 5 -6x与x2 =2 5 -8y的所有的交点的坐标。 (不要使用一元四次方程求根公式。)3 试求出所有的有序正整数对 (a ,b) (a≤b) ,使得a能整除b2 +b +1 ,且b能整除a2 +a +1。4 试求出所有的函数 f :R -{0 ,1 }→R -{0 },使得对于任何的满足“x·f(y) ,y -x∈R -{0 ,1 }”的x∈R -{0 },y∈R -{0 ,1 },都有  f(x·f(y) ) =(1 -y)·f(y -x)。5 试求出所有的函数 f :R→R ,使得对于任何的x、y∈…  相似文献   

11.
向量不仅是解决立体几何、解析几何的有力工具 ,也是解决代数和三角问题的有力工具 ,它可使许多代数和三角问题的求解过程变得轻松 ,生动 ,给人以数学美的享受 .它为解决中学数学问题开避了一条新的途径 .一、比较大小例 1 已知a ,b∈R ,0 <x<1,试比较a2x + b21-x 与 (a +b) 2 的大小 .解 设向量m=ax,b1-x ,n=(x ,1-x) .由 (m·n) 2 ≤|m|2 |n|2 ,得(a +b) 2=ax·x + b1-x· 1-x2≤ a2x + b21-x x+ (1-x)=a2x + b21-x.例 2  (2 0 0 0年河北省高中数学竞赛试题 )已知a ,b∈R ,m ,n∈R+…  相似文献   

12.
题目 :设 f(x) =ax2 bx c,且当 |x|≤ 1时 ,总有 |f(x) |≤ 1.求证 :|f( 2 ) |≤ 8.证明 :∵当 |x|≤ 1时 ,总有 |f(x) |≤ 1,∴ |f( 0 ) |≤ 1,即 |c|≤ 1;|2b|=|f( 1) - f( - 1) |≤ |f( 1) | |f( - 1) |≤ 1 1=2 ,从而 |b|≤ 1;|2a |=|f( 1) f(  相似文献   

13.
选择题1 下列各式 :( 1) 2 0 0 1 {x|x≤ 2 0 0 3};( 2 ) 2 0 0 3∈ {x|x <2 0 0 3};( 3) {2 0 0 3} {x|x≤ 20 0 3};( 4)Φ∈ {x|x <2 0 0 3},其中正确式子的个数为 (   )A 1  B 2  C 3  D 42 满足f(π +x) =- f(x) ,f( -x) =f(x)的函数 f(x)可能是 (   )A sinx B sin x2  C cos2x D cosx3 若函数 f(x) =ax(a >0 ,a≠ 1)为减函数 ,那么 g(x) =log1a1x - 1的图象是 (   )A       BC       D4 如果a·b =a·c且a≠ 0 ,那么 (   )A b =…  相似文献   

14.
定义 :y =ax2 +bx +c…… (1)与 y =cx2 +bx +a…… (2 )称为对逆二次函数。其中a≠c ,ac≠ 0。性质 :1、它们有共同的定义域 ,有共同的判别式△ =b2 - 4ac ,当a、c同号时 ,其图象的开口方向相同 ,当a、c异号时 ,其图象的开口方向相反。2、当b =0时 ,函数 y =ax2 +bx +c与 y =cx2 +bx +a都是偶函数。当b≠ 0时 ,都是非奇非偶函数。3、y =ax2 +bx +c当a >0时 ,在区间 (-∞ ,- b2a]上是减函数 ,在区间 [- b2a,+∞ )上是增函数 ,当a <0时则反之。y =cx2 +bx +a当c <0时 ,在区间 (-∞ …  相似文献   

15.
本文用初等方法导出函数 f(x) =ax b cx d(a >0 ,c<0 )的几个优美性质。1 f(x)不是单调函数显然 ,函数的定义域为 [-ba ,-dc]。任给x1、x2 ∈ [-ba ,-dc],且x1<x2 ,则f(x1) -f(x2 ) =(ax1 b cx1 d) -(ax2 b cx2 d)=(ax1 b  相似文献   

16.
数学阅读与解题学习   总被引:1,自引:0,他引:1  
阅读刊物 ,就像学生听课一样 ,不是一个被动接受的过程 ,而是一个主动建构的过程 ,当教师 (读者 )阅读一个数学问题的处理时 ,这个主动建构的过程少不了对解题过程的分析与优化 ,更需要进行解题过程的评价与反思 .下面是笔者阅读刊物的两个学习经历 .一、对解题过程的分析与优化文 [1]在谈“解题策略”时引述了下面的例子 (原文例 3) :例 1 已知二次函数 f(x) =ax2 bx c,当 - 1≤x≤ 1时 ,有 - 1≤f(x)≤ 1.求证 :当 - 2≤x≤ 2时 ,有 - 7≤f(x)≤ 7.分析 :y =f(x) =ax2 bx c,当 - 1≤x≤ 1时 ,限定 - 1≤f(x)…  相似文献   

17.
有的文献证明了对任何x∈R,f(x)>0.本文获得定理 设x∈R,则f(x)=x4 x2 x 1在x=x0=-14 3-564 56144 3-564-56144=-060582958…处,取得最小值f(x0)=516[(x0 1)2 2]=067355322…此定理可用微分法证明,同时得知x0是方程f’(x)=0的惟一实根.下面用不等式(A2 B2)(1 a2)≥(A aB)2(=|aA=B)来证明.对f(x)进行”双配方”,应用该不等式,有f(x)=(x2 12x)2 34(x 23)2 23=(x2 12x)2 (32x 33)2 23≥11 a2[x2 (12 32a)x 33a]2 23.设3a=b,13<b<3,则x2 (12 b2)x b3≥14[4b3-(12 b2)2]=(3b-1)(3-b)48>0…  相似文献   

18.
贵刊在文 [1]中给出了“在约束条件Ax2 Bxy Cy2 =M下 ,求函数ω=Ax2 Dxy Cy2 (A ,C ,M∈R ,B ,D ∈R)的最值”这类问题的简易求法 ,读罢颇有收益 .笔者在教学实践中也对此问题作过一些探讨 ,发现了解决它的一种新方法 ,在此方法中主要用到如下两个结论 :(1)a2 b2 ≥ 2 |ab|[2 ] (a ,b∈R) .(2 ) |f(x)|≤g(x) -g(x) ≤f(x)≤g(x) [f(x) g(x) ]· [f(x) -g(x) ]≤ 0 .下面就以文 [1]中的例 1—例 3为例具体说明这种解法 .例 1  (1993年全国高中联赛题 )已知x、y∈R ,且 4x2 -…  相似文献   

19.
回音壁     
编辑部的叔叔阿姨 :你们好 !在学习了一元二次方程以后 ,我遇到一个问题 .请你们帮助解答 .谢谢 !已知x1、x2 是方程ax2 +bx +c =0 (a >0 )的两个根 ,且 0 <x1<1 ,1 <x2 <2 .求证 :a+b +c <0 .内蒙古 李贤李贤同学 :图 1这个问题用一元二次方程的知识来解的确很难 .现在 ,学了函数的知识以后 ,再解这个问题就简单多了 .设y=ax2 +bx +c(a >0 ) ,由已知条件可知 ,这个二次函数的图象如图 1所示 .观察图象 ,当x =1时 ,对应的点在x轴下方 ,所以 ,当x =1时 ,y =a +b +c<0 .解答过程涉及了二次函数与一元二次方程的关…  相似文献   

20.
众所周知 ,若a≥b且a≤b ,则a=b .利用这一结论常能解决一些数学问题 .下面是一道 2 0 0 2年全国联赛试题 :已知 f(x)是定义在R上的函数 ,f( 1 ) =1 ,且对任意x∈R都有f(x+ 5 )≥ f(x) + 5 ,f(x+ 1 )≤ f(x) + 1 .若 g(x) =f(x) + 1 -x ,则g( 2 0 0 2 ) =.解 由 g(x) =f(x) + 1 -x ,得g(x+ 5 ) =f(x + 5 ) + 1 -x-5=f(x + 5 ) -x-4≥ f(x) + 5 -x -4=f(x) + 1 -x =g(x) ,g(x + 1 ) =f(x+ 1 ) + 1 -x -1=f(x+ 1 ) -x≤f(x) + 1 -x =g(x) .∴g(x) ≤g(x+ 5 )≤ g(x + 4)…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号