首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
This paper develops a novel adaptive state tracking control scheme based on Takagi–Sugeno (T–S) fuzzy models with unknown parameters. The proposed method can deal with T–S models in a non-canonical form and allows the number of inputs to be less than state variables, which is more practical and has wider applications. The needed matching conditions for state tracking are relaxed by using a T–S fuzzy reference model to generate desired state reference signals. A new fuzzy estimator model is constructed whose states are compared with those of the T–S fuzzy model to generate the estimator state error which is used for the parameter adaptive law. Based on the Lyapunov stability theory, it has been proven that all the signals in the closed-loop system are bounded and the asymptotic state tracking can be achieved. The effectiveness of the proposed scheme is demonstrated through a magnetic suspension system and a transport airplane model.  相似文献   

2.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

3.
This paper investigates the adaptive fuzzy output feedback fault-tolerant tracking control problem for a class of switched uncertain nonlinear systems with unknown sensor faults. In this paper, since the sensor may suffer from an unknown constant loss scaling failure, only actual output can be used for feedback design. A failure factor is employed to represent the loss of effectiveness faults. Then, an adaptive estimation coefficient is introduced to estimate the failure factor, and a state observer based on the actual output is constructed to estimate the system states. Fuzzy logic systems are used to approximate the unknown nonlinear functions. Based on the Lyapunov function method and the backstepping technique, the proposed control scheme with average dwell time constraints can guarantee that all states of the closed-loop system are bounded and the tracking error can converge to a small neighborhood of zero. Finally, two simulation examples are given to illustrate the effectiveness of the proposed scheme.  相似文献   

4.
This paper investigates the problem of asymptotic tracking control of nonlinear robotic systems with prescribed performance. The control strategy is developed based on a modified prescribed performance function (PPF) to guarantee the transient behavior, while the requirements on the accurate initial tracking error in the classical PPF can be remedied. The fuzzy logic system (FLS) is used to approximate the unknown dynamics. In the existing PPF based adaptive control schemes with FLSs, the tracking error does not achieve asymptotic convergence. To address this issue, a robust integral of the sign of the error (RISE) term is incorporated into the control design to reject the FLS approximation errors and external disturbances, such that the asymptotic convergence is achieved. Finally, numerical simulation and experimental results validate the effectiveness of the proposed control scheme.  相似文献   

5.
This paper presents an improved adaptive design strategy for neural-network-based event-triggered tracking of uncertain strict-feedback nonlinear systems. An adaptive tracking scheme based on state variables transmitted from the sensor-to-controller channel is designed via only single neural network function approximator, regardless of unknown nonlinearities unmatched in the control input. Contrary to the existing multiple-function-approximators-based event-triggered backstepping control results with multiple triggering conditions dependent on all error surfaces, the proposed scheme only requires one triggering condition using a tracking error and thus can overcome the problem of the existing results that all virtual controllers with multiple function approximators should be computed in the sensor part. This leads to achieve the structural simplicity of the proposed event-triggered tracker in the presence of unmatched and unknown nonlinearities. Using the impulsive system approach and the error transformation technique, it is shown that all the signals of the closed-loop system are bounded and the tracking error is bounded within pre-designable time-varying bounds in the Lyapunov sense.  相似文献   

6.
This paper concerns an adaptive fuzzy tracking control problem for a class of switched uncertain nonlinear systems in strict-feedback form via the modified backstepping technique. The unknown nonlinear functions are approximated by the generalized fuzzy hyperbolic model (GFHM). It is shown that if the designed parameters in the controller and adaptive laws are appropriately selected, then all closed-loop signals are bounded and the stability of the system can be kept under average dwell time methods. In the end, simulation studies are presented to illustrate the effectiveness of the proposed method.  相似文献   

7.
The tracking problem of high-order nonlinear multi-agent systems (MAS) with uncertainty is solved by designing adaptive sliding mode control. During the tracking process, node failures are possible to occur, a new agent replaces the failed one. Firstly, a distributed nonsingular terminal sliding mode(NTSM) control scheme is designed for the tracking agents. A novel continuous function is designed in the NTSM to eliminate the singularity and meanwhile guarantee the estimation of finite convergence time. Secondly, the unknown uncertainties in the tracking agents are compensated by proposing an adaptive mechanism in the NTSM. The adaptive mechanism adjusts the control input through estimating the derivative bound of the unknown uncertainties dynamically. Thirdly, the tracking problem with node failures and agent replacements is further investigated. Based on the constructed impulsive-dependent Lyapunov function, it is proved that the overall system will track the target in finite time even with increase of jump errors. Finally, comparison simulations are conducted to illustrate the effectiveness of proposed adaptive nonsingular terminal sliding mode control method for tracking systems suffering node failures.  相似文献   

8.
In this paper, a command filter-based adaptive fuzzy controller is constructed for a class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a command filter-based control strategy is presented to make that the tracking error converge to an any small neighborhood of zero and all closed-loop signals are bounded. In the design procedure, fuzzy logic system is employed to estimate unknown package nonlinear functions, which avoids excessive and burdensome computations. The control scheme not only resolves the explosion of complexity problem but also eliminates the filtering error in finite-time. An example has evaluated the validity of the control method.  相似文献   

9.
In this paper, an adaptive finite-time funnel control for non-affine strict-feedback nonlinear systems preceded by unknown non-smooth input nonlinearities is proposed. The input nonlinearities include backlash-like hysteresis and dead-zone. Unknown nonlinear functions are handled using fuzzy logic systems (FLS), based on the universal approximation theorem. An improved funnel error surface is utilized to guarantee the steady-state and transient predetermined performances while the differentiability problem in the controller design is averted. Using the Lyapunov approach, all the adaptive laws are extracted. In addition, an adaptive continuous robust term is added to the control input to relax the assumption of knowing the bounds of uncertainties. All the signals in the closed-loop system are shown to be semi-globally practically finite-time bounded with predetermined performance for output tracking error. Finally, comparative numerical and practical examples are provided to authenticate the efficacy and applicability of the proposed scheme.  相似文献   

10.
In this paper, an adaptive fuzzy fixed time control scheme is developed for stochastic pure-feedback nonlinear systems with full state constraints. The mean value theorem is exploited to deal with the problem of nonaffine appearance in the systems and transform the structure of pure-feedback to the structure of strict-feedback. The barrier Lyapunov functions are constructed to guarantee that all states in the systems maintain within the prescribed constraints and the fuzzy logic systems are employed to approximate unknown nonlinear functions at each step. Then, an adaptive fuzzy fixed time controller is constructed by utilizing backstepping technique, which guarantees that all the signals in the considered systems are semiglobally uniform ultimately bounded in a fixed time. Finally, the validity of the proposed fixed time control scheme is verified via a simulation example.  相似文献   

11.
This paper addresses the problem of robust adaptive attitude tracking control for spacecraft with mismatched and matched uncertainties. The idea of disturbance estimation and compensation is introduced into the control design. First, finite-time disturbance observers are developed for different channels of spacecraft based on barrier functions for achieving finite-time asymptotic estimates of unknown bounded uncertainties in the system. Second, a class of prescribed performance functions is considered in the design of the barrier function. The spacecraft attitude adaptive tracking control strategy with finite-time convergence capability and prescribed performance is proposed based on the designed finite-time disturbance observers and barrier function. Finally, the theoretical findings are verified by numerical simulations and compared with the simulation results of existing methods.  相似文献   

12.
A methodology for the design of fuzzy control laws for tracking control of mechanical systems is described. The approach uses Lyapunov's stability theory to formulate a class of control laws that guarantee convergence of the tracking errors to within specification limits in presence of bounded parameter uncertainties and input disturbances. The proposed methodology results in control laws that possess a large number of parameters and functional relationships to be chosen by the designer. The flexibility of the approach makes it suitable for fuzzy logic implementation. Different fuzzy implementations of the proposed control methodology are described. All implementations guarantee tracking error convergence to within prespecified performance limits. Simulations using a model of a two-degree-of-freedom robot manipulator were performed to investigate fuzzy and non-fuzzy implementations of the proposed methodology. The study demonstrates better performance of the fuzzy control implementation compared to its non-fuzzy counterpart.  相似文献   

13.
This paper focuses on an adaptive fuzzy fixed-time control problem for stochastic nonstrict nonlinear systems with unknown dead-zones by using dynamic surface control (DSC) technology. Fuzzy logic systems (FLSs) and DSC technology are used to approximate nonlinear functions and reduce the computational complexity, respectively. At the same time, the influence of the dead-zone disturbance is offset by transforming the dead-zone model into the nonlinear model that can be approximated by the FLSs. Then, based on the fixed-time stability theory, an adaptive fuzzy fixed-time tracking control strategy is proposed, which can ensure semi-global practical fixed-time stability of the system and the tracking error converging to a small neighborhood near the origin. Finally, two simulation examples are given to prove the effectiveness of the proposed control strategy.  相似文献   

14.
This paper aims to solve the finite time consensus control problem for spacecraft formation flying (SFF) while accounting for multiple time varying communication delays and changing topologies among SFF members. First, in the presence of model uncertainties and external disturbances, the coupled dynamics of relative position and attitude are derived based on the Lie group SE(3), in which the position and attitude tracking errors with respect to the virtual leader whose trajectory is computed offline are described by exponential coordinates. Then, a nonsingular fast terminal sliding mode (NFTSM) constructed by the exponential coordinates and velocity tracking errors is developed, based on which adaptive fuzzy NFTSM control schemes are proposed to guarantee that the ideal configurations of the SFF members with respect to the virtual leader can be achieved in finite time with high accuracy and all the aforementioned drawbacks can be overcome. The convergence and stability of the closed-loop system are proved theoretically by Lyapunov methods. Finally, numerical simulations are presented to validate the effectiveness and feasibility of the proposed controllers.  相似文献   

15.
The adaptive asymptotic tracking control problem for a class of stochastic non-strict-feedback switched nonlinear systems is addressed in this paper. For the unknown continuous functions, some neural networks are used to approximate them online, and the dynamic surface control (DSC) technique is employed to develop the novel adaptive neural control scheme with the nonlinear filter. The proposed controller ensures that all the closed-loop signals remain semiglobally bounded in probability, at the same time, the output signal asymptotically tracks the desired signal in probability. Finally, a simulation is made to examine the effectiveness of the proposed control scheme.  相似文献   

16.
This paper deals with the distributed tracking control of a heat process having uncertain diffusivity and subject to a distributed disturbance whose L2 norm is bounded by a constant which is not known a priori. Under certain regularity assumptions on the disturbance and on the chosen reference profile, a distributed unit-vector control, with an adaptive magnitude, is designed which provides the asymptotic tracking of the reference. The logic governing the gain adaptation is gradient-based and monodirectional, i.e. the gain cannot decrease over time. Lyapunov arguments are invoked to support the convergence properties of the proposed scheme, whose performance are also investigated by means of computer simulations.  相似文献   

17.
In the present study, a novel technique is suggested for the adaptive non-linear model predictive control based on the fuzzy approach in three stages. In the presented approach, in the first stage, the prediction and control horizons are obtained from a fuzzy system in each control step. Another fuzzy system is employed to determine the weight factors before the optimization stage of developing new controller. The proposed controller gives the parameters of the model predictive control (MPC) in each control step in order to improve the performance of nonlinear systems. The proposed control scheme is compared with the traditional MPC and Generic Model Control for controlling MED-TVC process. The performances of the three proposed controllers have been investigated in the absence and presence of disturbance in order to evaluate the stability and robustness of the proposed controllers. The results reveal that the novel adaptive controller based on fuzzy approach performs better than the two other controllers in set-point tracking and disturbance rejection with lower IAE criteria. In addition, the average computational time for the adaptive MPC exhibits a decline of 34% in comparison with the traditional MPC.  相似文献   

18.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

19.
This study carries out the problem of adaptive backstepping fuzzy tracking control for a class of full state constrained uncertain nonlinear system with unknown control directions. Based on Nussbaum-type functions and tan-type Barrier Lyapunov functions, a novel adaptive fuzzy tracking controller is proposed to guarantee that the system output tracking error asymptotically converges to zero, while the constraints on the states of system will not be violated during operation. Compared with the existing results, a better convergence effect is obtained for this class of systems. Stability analysis of the proposed closed-loop control system is supported by the Lyapunov stability theory. Finally, a simulation example is presented to illustrate the effectiveness of the proposed control strategy.  相似文献   

20.
This article proposes a novel explicit-time and explicit-accuracy adaptive fuzzy control for a state-constrained nonlinear nonstrict-feedback uncertain system. This method can explicitly parameterize the upper bound of settling-time with low initial control input under a bounded initial condition. Meanwhile, this method can also explicitly parameterize the upper bound of accuracy while achieving low control input based on the adaptive fuzzy dynamic-approximation theorem. Firstly, a novel generalized explicit-time stability system is proposed by introducing the boundary gain term to render the time-parameter explicit, this method can solve the input conservatism problem caused by the unbounded-state gain term of traditional fixed/prdefined-time function. Then, according to the universal fuzzy approximation theorem, the novel dynamic relationship of adaptive fuzzy logic system between approximation error and adaptive parameters is presented. This relationship can lead to the adaptive fuzzy dynamic-approximation theorem, and an adaptive law designed by this theorem can realize the Lyapunov stability of adaptive control system under a Lasalle invariant set. In the end, a novel adaptive fuzzy control scheme is proposed by the generalized explicit-time function and adaptive fuzzy dynamic-approximation theorem. This scheme can achieve the explicit-time stability by the human-like activation function, and the accuracy can be parameterized by Lyapunov synthesis. Compared with other existing fixed/prdefined-time adaptive fuzzy control methods, the proposed explicit-time and explicit-accuracy controller achieves a significant reduction in the initial control input. Theoretical analysis and simulation results validate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号