首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The study aims to solve the problem of real time tracking and precise landing of unmanned aerial vehicle (UAV) during unmanned surface vehicle (USV) navigation. In this paper, a UAV-USV cooperative tracking and landing control strategy based on nonlinear model predictive control (NMPC) is proposed. Firstly, the UAV-USV heterogeneous intelligent body collaborative system is constructed based on the mathematical model of UAV and USV; secondly, the tracking controller is designed based on NMPC algorithm to ensure that the UAV can track the USV in real time; finally, a UAV-USV cooperative landing control strategy is proposed to realize the heave motion of the USV to the peak vertex, thus, the UAV completes the precise landing with the minimum impact. As the simulation experimental results show, the UAV-USV cooperative tracking and landing control scheme proposed in this paper can provide effective solution against real time tracking and accurate landing of UAV during the navigation of USV.  相似文献   

2.
This paper investigates the finite-time cooperative formation control problem for a heterogeneous system consisting of an unmanned ground vehicle (UGV) - the leader and an unmanned aerial vehicle (UAV) - the follower. The UAV system under consideration is subject to modeling uncertainties, external disturbance as well as actuator faults simultaneously, which is associated with aerodynamic and gyroscopic effects, payload mass, and other external forces. First, a backstepping controller is developed to stabilize the leader system to track the desired trajectory. Second, a robust nonsingular fast terminal sliding mode surface is designed for UAV and finite-time position control is achieved using terminal sliding mode technique, which ensures the formation error converges to zero in finite time in the presence of actuator faults and other uncertainties. Furthermore, by combining the radial basis function neural networks (NNs) with adaptive virtual parameter technology, a novel NN-based adaptive nonsingular fast terminal sliding formation controller (NN-ANFTSMFC) is developed. By means of the proposed adaptive control strategy, both uncertainties and actuator faults can be compensated without the prior knowledges of the uncertainty bounds and fault information. By using the proposed control schemes, larger actuator faults can be tolerated while eliminating control chattering. In order to realize fast coordinated formation, the expected position trajectory of UAV is composed of the leader position information and the desired relative distance with UGV, based on local distributed theory, in the three-dimensional space. The tracking and formation controllers are proved to be stable by the Lyapunov theory and the simulation results demonstrate the effectiveness of proposed algorithms.  相似文献   

3.
In this study, an adaptive fractional order sliding mode controller with a neural estimator is proposed for a class of systems with nonlinear disturbances. Compared with traditional sliding mode controller, the new proposed fractional order sliding mode controller contains a fractional order term in the sliding surface. The fractional order sliding surface is used in adaptive laws which are derived in the framework of Lyapunov stability theory. The bound of the disturbances is estimated by a radial basis function neural network to relax the requirement of disturbance bound. To investigate the effectiveness of the proposed adaptive neural fractional order sliding mode controller, the methodology is applied to a Z-axis Micro-Electro-Mechanical System (MEMS) gyroscope to control the vibrating dynamics of the proof mass. Simulation results demonstrate that the proposed control system can improve tracking performance as well as parameter identification performance.  相似文献   

4.
This paper studies the cooperative fault-tolerant formation control problem of tracking a dynamic leader for heterogeneous multiagent systems consisting of multipile unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) with actuator faults under switching directed interaction topologies. Based on local neighborhood formation information, the distributed fault-tolerant formation controllers are constructed to ensure that all follower UAVs and UGVs can accomplish the demanding formation configuration in the state space and track the dynamic leader’s trajectory. By incorporating the sliding mode control and adaptive control technique, the actuator faults and unknown parameters of follower agents can be compensated. Through the theoretical analysis, it is proved that the cooperatively semiglobally uniformly ultimately boundedness of the closed-loop system is guaranteed, and the formation tracking errors converge to a small adjustable neighborhood of the origin. A simulation example is introduced to show the validity of the proposed distributed fault-tolerant formation control algorithm.  相似文献   

5.
Gas flow has fractional order dynamics; therefore, it is reasonable to assume that the pneumatic systems with a proportional valve to regulate gas flow have fractional order dynamics as well. There is a hypothesis that the fractional order control has better control performance for this inherent fractional order system, although the model used for fractional controller design is integer order. To test this hypothesis, a fractional order sliding mode controller is proposed to control the pneumatic position servo system, which is based on the exponential reaching law. In this method, the fractional order derivative is introduced into the sliding mode surface. The stability of the controller is proven using Lyapunov theorem. Since the pressure sensor is not required, the control system configuration is simple and inexpensive. The experimental results presented indicate the proposed method has better control performance than the fractional order proportional integral derivative (FPID) controller and some conventional integral order control methods. Points to be noticed here are that the fractional order sliding mode control is superior to the integral order sliding mode counterpart, and the FPID is superior to the corresponding integral order PID, both with optimal parameters. Among all the methods compared, the proposed method achieves the highest tracking accuracy. Moreover, the proposed controller has less chattering in the manipulated variable, the energy consumption of the controller is therefore substantially reduced.  相似文献   

6.
Unmanned tractors are widely adopted in agricultural operations as autonomous driving technology progresses. The current path tracking control methods are limited by the unstructured farmland, the accuracy and anti-interference ability needed to be improved. This paper presents a novel adaptive second-order sliding mode (ASOSM) control method to tackle the aforementioned problems in practical implementation. First, we introduce a preview lateral offset model based on the preview kinematic and tractor dynamic model, which helps solve the under-actuated problem in path tracking. Then, the ASOSM controller is designed using the revamped adding a power integrator (API) and adaptive mechanism, which ensures that the sliding variable is converged to zero within the finite time. Meanwhile, the chattering problem in traditional sliding mode control is relieved. Finally, a high-fidelity and full-car model is established under Simulink/Carsim environment, and comparative simulations conrm the superiority of the designed control method.  相似文献   

7.
To improve the path tracking control performance of the intelligent vehicle under critical maneuvers, a novel control strategy is introduced in this work. Considering that the tire cornering characteristics show high nonlinearities and uncertainties under those special driving conditions, a three-dimensional piecewise affine (PWA) identification method is proposed to realize the nonlinear modeling of the tire cornering characteristics for the first time. On this basis, the PWA model of the vehicle lateral dynamics is established. To obtain the vehicle target yaw rate for path tracking, a driver direction control model with adaptive preview time is put forward. Then, the linear quadratic optimal control method is further adopted to design multiple path tracking controllers for different working areas of the affine subsystems, thus the optimal steering angles of the front wheels can be generated to guarantee the path tracking performance for the intelligent vehicle under a wide range of driving conditions. Finally, to evaluate the performance of the proposed path tracking control strategy which considers the tire nonlinear cornering characteristics in the PWA form, the CarSim-Simulink co-simulation work is conducted. The co-simulation results show that the proposed control strategy presents significant performance advantages over the other two methodologies and demonstrates satisfactory path tracking control performance.  相似文献   

8.
This paper investigates the fixed-time neural network adaptive (FNNA) tracking control of a quadrotor unmanned aerial vehicle (QUAV) to achieve flight safety and high efficiency. By combining radial basis function neural network (RBFNN) with fixed time adaptive sliding mode algorithm, a novel radial basis function neural network adaptive law is proposed. In addition, an extended state/disturbance observer (ESDO) is proposed to solve the problem of unmeasurable state and external interference, which can obtain reliable state feedback and interference input. Unlike most other ESO applications, this paper does not set the uncertainty model and external disturbances as total disturbances. Instead, the external disturbances are observed by extending the states and the observed states are fed back to the controller to cancel the disturbances. In view of the time-varying resistance coefficient and inertia torque in the QUAV model, the neural network is introduced so that the controller does not need to consider these nonlinear uncertainties. Finally, a numerical example is given to verify the effectiveness of the coupled non-simplified QUAV model.  相似文献   

9.
In this paper, the appointed-time prescribed performance and finite-time tracking control problem is investigated for quadrotor unmanned aerial vehicle (QUAV) in the presence of time-varying load, unknown external disturbances and unknown system parameters. For the position loop, a novel appointed-time prescribed performance control (ATPPC) strategy is proposed based on adaptive dynamic surface control (DSC) frameworks and a new prescribed performance function to achieve the appointed-time convergence and prescribed transient and steady-state performance. For the attitude loop, a new finite-time control strategy is proposed based on a new designed sliding mode control technique to track the desired attitude in finite time. Some assumptions of knowing system parameters are canceled. Finally, the stability of the closed-loop system is proved via Lyapunov Theory. Simulations are performed to show the effectiveness and superiority of the proposed control scheme.  相似文献   

10.
This paper is concerned with the adaptive sliding mode control (ASMC) design problem for a flexible air-breathing hypersonic vehicle (FAHV). This problem is challenging because of the inherent couplings between the propulsion system, the airframe dynamics and the presence of strong flexibility effects. Due to the enormous complexity of the vehicle dynamics, only the longitudinal model is adopted for control design in the present paper. A linearized model is established around a trim point for a nonlinear, dynamically coupled simulation model of the FAHV, then a reference model is designed and a tracking error model is proposed with the aim of the ASMC problem. There exist the parameter uncertainties and external disturbance in the model, which are not necessary to satisfy the so-called matched condition. A robust sliding surface is designed, and then an adaptive sliding mode controller is designed based on the tracking error model. The proposed controller can drive the error dynamics onto the predefined sliding surface in a finite time, and guarantees the property of asymptotical stability without the information of upper bound of uncertainties as well as perturbations. Finally, simulations are given to show the effectiveness of the proposed control methods.  相似文献   

11.
设计并实现了一种基于DM642视频车辆检测系统。提出了一种基于虚拟线圈匹配的算法,算法原理是估计车辆的速度和结合背景差统计量来检测通过监测区域的车辆,把算法移植到DM642平台中进行处理运行,处理结果可以满足视频处理的实时性要求,并且算法对外界环境变化的干扰有一定的鲁棒性,准确的车流量检测精度,并且运行稳定。  相似文献   

12.
A fault tolerant control scheme for actuator and sensor faults is proposed for a tilt-rotor unmanned aerial vehicle (UAV) system. The tilt-rotor UAV has a vertically take-off and landing (VTOL) capability like a helicopter during the take-off & landing while it could cruise with a high speed as a conventional airplane flight mode. A dual system in the flight control computer (FCC) and the sensor is proposed in this study. To achieve a high reliability, a fault tolerant flight control system is required for the case of actuator or sensor fault. For the actuator fault, the fault tolerant control scheme based on model error control synthesis is presented. A designed fault tolerant control scheme does not require system identification process and it provides an effective reconfigurability without fault detection and isolation (FDI) process. For the sensor fault, the fault tolerant federated Kalman filter is designed for the tilt-rotor UAV system. An FDI algorithm is applied to the federated Kalman filter in order to improve the accuracy of the state estimation even when the sensor fails. For a linearized six-degree-of-freedom linear model and nonlinear model of the tilt-rotor UAV, numerical simulation and process-in-the-loop simulation (PILS) are performed to demonstrate the performance of the proposed fault tolerant control scheme.  相似文献   

13.
结合电商物流特点,探讨混合时间窗车辆路径问题,设计了混合时间窗惩罚函数和模糊预约时间函数,建立了基于混合时间窗约束的多目标车辆路径模型。设计了改进智能水滴算法对模型进行求解,改进节点概率选择方式来保护优秀水滴,设置路径泥土量最大和最小限制以防止算法提前进入收敛。最后,运用实际案例模拟计算,与传统智能水滴算法计算结果对比分析。结果表明,改进智能水滴算法求解混合时间窗下多目标电商物流路径优化问题,能够以很高的概率获得更优的全局最优解,是求解这类问题有效算法。  相似文献   

14.
This paper studies the problem of output feedback sliding mode control (OFSMC) for fractional order nonlinear systems. A necessary and sufficient condition for the existence of a sliding surface is obtained by a new singular system approach and a linear matrix equality (LMI), which reduces the conservativeness of the system. Then an OFSMC law is designed based on a fractional order Lyapunov method, which ensures that the resulting fractional closed-loop system is asymptotically stable and the states of the fractional closed-loop system converge to the sliding surface in finite time. A fractional electrical circuit is discussed to illustrate the effectiveness of the proposed approach.  相似文献   

15.
In this paper, a fixed-time dual closed-loop attitude control method is investigated for a quadrotor unmanned aerial vehicle. Firstly, a fixed-time adaptive fast super-twisting disturbance observer is presented for estimating the unknown external disturbance. A modified adaptive law is employed based on an equivalent control method to obtain proper observer gains. Secondly, a fixed-time controller is designed by using a universal barrier Lyapunov function to satisfy asymmetric tracking error constraints. Then, a tracking differentiator is utilised to arrange the transition process. Finally, the implementation of the developed method in a quadrotor unmanned aerial vehicle is performed. Through stability analysis and simulation results, the effectiveness and superiority of the proposed fixed-time control method are validated.  相似文献   

16.
In this work, we developed a novel active fault-tolerant control (FTC) design scheme for a class of nonlinear dynamic systems subjected simultaneously to modelling imperfections, parametric uncertainties and sensor faults. Modelling imperfections and parametric uncertainties are dealt with using an adaptive radial basis function neural network (RBFNN) that estimates the uncertain part of the system dynamics. For sensor fault estimation (FE), a nonlinear observer based on the estimated dynamics is designed. A scheme to estimate sensor faults in real-time using the nonlinear observer and an additional RBFNN is developed. The convergence properties of the RBFNN, used in the fault FE part, are improved by using a sliding surface function. For FTC design, a sliding surface is designed that incorporates the real-time sensor FE. The resulting sliding mode control (SMC) technique-based FTC law uses the estimated dynamics and real-time sensor FE. A double power-reaching law is adopted to design the switching part of the control law to improve the convergence and mitigate the chattering associated with the SMC. The FTC works well in the presence and absence of sensor faults without the requirement for controller reconfiguration. The stability of the proposed active FTC law is proved using the Lyapunov method. The developed scheme is implemented on a nonlinear simulation of an unmanned aerial vehicle (UAV). The results show good performance of the proposed unified FE and the FTC framework.  相似文献   

17.
The high-performance control requires the system to be stable, fast and accurate simultaneously. However, various systems (e.g., motors, industrial robots) generally face technical challenges such as nonlinearities, uncertainties, external disturbances and physical constraints, which make it difficult to reach the hardware potential of the systems to track the desired trajectories when satisfying the high-performance control requirements. Therefore, take a two-order nonlinear system for example, an optimization-based adaptive neural sliding mode control based on a two-loop control structure is proposed in this paper, where the outer and inner loops are designed separately to achieve different control requirements. Namely, the outer loop is designed as a model predictive control (MPC)-based optimization problem, which can optimize the desired trajectories to meet the state and input constraints, and maximize the converging speed of transient response as fast as possible, and the inner loop is designed with a recurrent neural network (RNN)-based adaptive neural sliding mode controller, which can guarantee the tracking of the replanned desired trajectories from outer loop as accurate as possible. The stability of the system is guaranteed by Lyapunov theorem, the optimal tracking performance is achieved under nonlinearities, uncertainties, external disturbances and physical constraints, and comparative simulation with a motor system is carried out to verify the effectiveness and superiority of the proposed approach.  相似文献   

18.
In order to ensure that under the influence of input saturation, a safe distance between adjacent locomotives and adjacent trains in multiple heavy haul trains (HHTS) is main-tained, an anti-saturation sliding mode consistency (ASMC) control algorithm is proposed. First, a multitrain and multiparticle dynamic model (MMDM) based on multitrain single particle that considers nonlinear coupling force and external disturbance effect is established. Next, a dynamic auxiliary compensation (DAC) system combined with sliding mode surface that can rapidly reduce the saturation deviation is designed and consistency algorithm of the simplified control structure is introduced to construct the ASMC control algorithm. Then, theoretical derivation proved that the algorithm can ensure the convergence of the tracking distance between adjacent locomotives and between adjacent trains to a bounded safe range whilst overcoming the influence of input saturation on each train. Lastly, the simulink and RT-LAB simulation results are used to verify the effectiveness of the design algorithm.  相似文献   

19.
In this paper, a decentralized asymptotic fault tolerant control system is proposed for near space vehicle (NSV) attitude dynamics. First, NSV reentry mode is described, and the actuator failure model is developed whose behavior is described by high-order dynamics. Next, the multi-model based fault diagnosis and identification (FDI) algorithm is proposed for high order actuator dynamics, which can accurately diagnose and identify the fault in short time. Based on sliding mode, command filter, and backstepping technique, using information of FDI, a constrained fault tolerant control (FTC) is designed for reentry NSV. Finally, simulation results are given to demonstrate the effectiveness and potential of the proposed FTC scheme.  相似文献   

20.
Lack of actuators creates many challenges in controlling underactuated systems. Additional difficulty arises when underactuated systems are subject to actuator faults, parametric uncertainties, and disturbances. We develop an adaptive robust controller for such systems by combining various advanced techniques with many benefits. The core of the controller, which is based on nonsingular integral fast-terminal sliding mode, ensures high robustness and quick finite-time convergence, reduces chattering, and prevents singularity. Fault-tolerant control provides good fault compensation. Fractional derivatives make the control structure flexible because fractional orders are adjustable gains. Self-tuning control creates an adaption mechanism that endows the system an intelligent behavior. Two layers of the sliding mode that contain fractional derivative, terminal power, and definite integral ensure terminal Mittag–Leffer stability. We test the proposed approach on an underactuated floating crane through a simulation and an experiment. A comparison with other methods shows the superiority of our approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号