首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper investigates the finite-time cooperative formation control problem for a heterogeneous system consisting of an unmanned ground vehicle (UGV) - the leader and an unmanned aerial vehicle (UAV) - the follower. The UAV system under consideration is subject to modeling uncertainties, external disturbance as well as actuator faults simultaneously, which is associated with aerodynamic and gyroscopic effects, payload mass, and other external forces. First, a backstepping controller is developed to stabilize the leader system to track the desired trajectory. Second, a robust nonsingular fast terminal sliding mode surface is designed for UAV and finite-time position control is achieved using terminal sliding mode technique, which ensures the formation error converges to zero in finite time in the presence of actuator faults and other uncertainties. Furthermore, by combining the radial basis function neural networks (NNs) with adaptive virtual parameter technology, a novel NN-based adaptive nonsingular fast terminal sliding formation controller (NN-ANFTSMFC) is developed. By means of the proposed adaptive control strategy, both uncertainties and actuator faults can be compensated without the prior knowledges of the uncertainty bounds and fault information. By using the proposed control schemes, larger actuator faults can be tolerated while eliminating control chattering. In order to realize fast coordinated formation, the expected position trajectory of UAV is composed of the leader position information and the desired relative distance with UGV, based on local distributed theory, in the three-dimensional space. The tracking and formation controllers are proved to be stable by the Lyapunov theory and the simulation results demonstrate the effectiveness of proposed algorithms.  相似文献   

2.
A fault tolerant control scheme for actuator and sensor faults is proposed for a tilt-rotor unmanned aerial vehicle (UAV) system. The tilt-rotor UAV has a vertically take-off and landing (VTOL) capability like a helicopter during the take-off & landing while it could cruise with a high speed as a conventional airplane flight mode. A dual system in the flight control computer (FCC) and the sensor is proposed in this study. To achieve a high reliability, a fault tolerant flight control system is required for the case of actuator or sensor fault. For the actuator fault, the fault tolerant control scheme based on model error control synthesis is presented. A designed fault tolerant control scheme does not require system identification process and it provides an effective reconfigurability without fault detection and isolation (FDI) process. For the sensor fault, the fault tolerant federated Kalman filter is designed for the tilt-rotor UAV system. An FDI algorithm is applied to the federated Kalman filter in order to improve the accuracy of the state estimation even when the sensor fails. For a linearized six-degree-of-freedom linear model and nonlinear model of the tilt-rotor UAV, numerical simulation and process-in-the-loop simulation (PILS) are performed to demonstrate the performance of the proposed fault tolerant control scheme.  相似文献   

3.
This study focuses on a sampled-data fuzzy decentralized tracking control problem for a quadrotor unmanned aerial vehicle (UAV) under the variable sampling rate condition. To this end, the overall dynamics of the quadrotor is expressed as a decentralized Takagi–Sugeno (T–S) fuzzy model interconnected with each other. Although the proposed decentralized control technique divides the overall UAV control system into attitude and position subsystems, the stability of the entire control system is guaranteed. Besides, in this paper, the model uncertainty, interconnection, and reference trajectory are considered as disturbances acting on the tracking error. To attenuate these disturbances, a novel sampled-data tracking control design technique is derived based on a linear reference model to be tracked and the time-dependent Lyapunov–Krasovskii functional (LKF). By doing so, both the stability of the tracking error dynamics and the minimization of tracking performance are guaranteed. Also, the proposed tracking control design method is derived as a linear matrix inequality (LMI)-based optimal problem. Finally, a simulation example is provided to demonstrate the effectiveness and feasibility of the proposed design methodology.  相似文献   

4.
This paper addresses the problem of a robust UAV tracking, surveillance and landing of a mobile ground target. The translational and angular dynamics of the vehicle are affected by bounded uncertainties; a Quasi-Integral Sliding Mode control is designed to obtain robustness from nearly the initial time. The flying mission considers three different dynamics of movement: the take-off to the desired altitude, the relative circular surveillance motion around the mobile ground target and eventually precise landing over the ground vehicle. This paper introduces a novel dynamic motion planning generator to perform such tracking maneuvers. It is based on the solution of a second order nonlinear differential equation, whose solution is force to move in a set of new parameterized ‘Bifurcation Sliding Mode Surfaces’ that exploit the Hopf Bifurcation properties to change the dynamic around the equilibrium point. A temporal switching technique is introduced for changing between three different bifurcation sliding surfaces at different time intervals. To illustrate that the quadcopter effectively performs the desired maneuvers, a computer animation is provided at the end of the paper.  相似文献   

5.
This paper studies the autonomous docking between an Unmanned Aerial Vehicle (UAV) and a Mobile Platform (MP) based on UWB and vision sensors. To solve this problem, an integrated estimation and control scheme is proposed, which is divided into three phases: hovering, approaching and landing. In the hovering phase, the velocity of the MP and relative position between the MP and UAV are estimated by using geometric tools and Cayley-Menger determinant based on ultra-wideband distance measurements; in the approaching phase, a recursive least squares optimization algorithm with a forgetting factor is proposed, which uses distance, displacement and MP’s velocity to estimate the relative position between the UAV and MP. With the estimated relative position, UAV can approach MP until reaching a distance such that MP is within the field of view of UAV; in the landing phase, the UWB measurement value and visual perception attitude are integrated with the UAV on-board navigation sensor of the UAV to perform the precision landing. Simulation and experiment results verify the effectiveness and feasibility of the proposed integrated navigation scheme.  相似文献   

6.
pH值的神经网络多步预测控制算法   总被引:6,自引:0,他引:6  
pH值控制过程是一个具有较强非线性、纯滞后的过程,针对pH值控制系统提出了一种基于神经网络的多步预测控制算法(NMPC)。神经网络用于辨识对象的预测模型,控制算法利用了神经网络的梯度信息。控制效果表明该控制系统具有较好的动态性能和较强的鲁棒性。  相似文献   

7.
In this paper, we study the cooperative consensus control problem of mixed-order (also called hybrid-order) multi-agent mechanical systems (MMSs) under the condition of unmeasurable state, unknown disturbance and constrained control input. Here, the controlled mixed-order MMSs are consisted of the mechanical agents having heterogeneous nonlinear dynamics and even non-identical orders, which means that the agents can be of different types and their states to be synchronized can be not exactly the same. In order to achieve the ultimate synchronization of all mixed-order followers, we present a novel distributed adaptive tracking control protocol based on the state and disturbance observations. Wherein, a distributed state observer is used to estimate the followers’ and their neighbors’ unmeasurable states. And, a novel estimated-state-based disturbance observer (DOB) is proposed to reduce the effect of unknown lumped disturbance for the mixed-order MMSs. The proposed control protocol and observers are fully distributed and can be calculated for each follower locally. Lyapunov theory is used for proving the stability of the proposed control algorithm and the convergence of the cooperative tracking errors. A practical cooperative longitudinal landing control example of unmanned aerial vehicles (UAVs) is given to illustrate the effectiveness of the presented control protocol.  相似文献   

8.
The problem of position tracking of a mini drone subject to wind perturbations is investigated. The solution is based on a detailed unmanned aerial vehicle (UAV) model, with aerodynamic coefficients and external disturbance components, which is introduced in order to better represent the impact of the wind field. Then, upper bounds of wind-induced disturbances are characterized, which allow a sliding mode control (SMC) technique to be applied with guaranteed convergence properties. The peculiarity of the considered case is that the disturbance upper bounds depend on the control amplitude itself (i.e. the system is nonlinear in control), which leads to a new procedure for the control tuning presented in the paper. The last part of the paper is dedicated to the analysis and reduction of chattering effects, as well as investigation of rotor dynamics issues. Conventional SMC with constant gains, proposed first order SMC, and proposed quasi-continuous SMC are compared. Nonlinear UAV simulator, validated through in-door experiments, is used to demonstrate the effectiveness of the proposed controls.  相似文献   

9.
In this study, a new robust homography-based visual tracking control approach for the quadrotor unmanned aerial vehicle (UAV) is developed. Specifically, employing the homography matrix as feedback, a hierarchical homography-based visual servoing (HBVS) scheme with a new command attitude extraction method to account for the underactuation of UAV is proposed. On this basis, a smooth hyperbolic tangent function is fulfilled as an augmented part of the backstepping control scheme, which guarantees the non-negative total thrust and avoid singularity. Additionally, a cascaded filter-based estimator and adaptive laws with integrable functions are embedded to counteract uncertainties including external perturbations, unknown acceleration of the moving target, and unknown image depth, and to facilitate the system’s asymptotic stability simultaneously. The theoretical analysis testifies that the whole close-loop system is asymptotically stable. Simulations further verify that the proposed HBVS controller can realize the visual tracking with a superior performance.  相似文献   

10.
In this paper, the appointed-time prescribed performance and finite-time tracking control problem is investigated for quadrotor unmanned aerial vehicle (QUAV) in the presence of time-varying load, unknown external disturbances and unknown system parameters. For the position loop, a novel appointed-time prescribed performance control (ATPPC) strategy is proposed based on adaptive dynamic surface control (DSC) frameworks and a new prescribed performance function to achieve the appointed-time convergence and prescribed transient and steady-state performance. For the attitude loop, a new finite-time control strategy is proposed based on a new designed sliding mode control technique to track the desired attitude in finite time. Some assumptions of knowing system parameters are canceled. Finally, the stability of the closed-loop system is proved via Lyapunov Theory. Simulations are performed to show the effectiveness and superiority of the proposed control scheme.  相似文献   

11.
This paper is concerned with the distributed formation control problem of multi-quadrotor unmanned aerial vehicle (UAV) in the framework of event triggering. First, for the position loop, an adaptive dynamic programming based on event triggering is developed to design the formation controller. The critic-only network structure is adopted to approximate the optimal cost function. The merit of the proposed algorithm lies in that the event triggering mechanism is incorporated the neural network (NN) to reduce calculations and actions of the multi-UAV system, which is significant for the practical application. What’s more, a new weight update law based on the gradient descent technology is proposed for the critic NN, which can ensure that the solution converges to the optimal value online. Then, a finite-time attitude tracking controller is adopted for the attitude loop to achieve rapid attitude tracking. Finally, the efficiency of the proposed method is illustrated by numerical simulations and experimental verification.  相似文献   

12.
In this paper, the trajectory tracking control problem of a six-degree of freedom (6-DOF) quadrotor unmanned aerial vehicle (UAV) with input saturation is studied. Applying a hierarchical control structure, a priori-bounded control thrust and the desired orientations are derived to stabilize the translational subsystem without singularities. By using a backstepping approach with a Nussbaum function, a priori-bounded control torque for the rotational subsystem is designed to track the desired orientations generated by the translational subsystem. With the proposed control scheme, the latent singularities in the attitude extraction process caused by saturation nonlinearities are avoided, and globally uniformly ultimately bounded (UUB) stability of the closed-loop system is achieved. The tracking error bound is further determined which can be made arbitrarily small by tuning certain control gains. Numerical simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

13.
To improve the path tracking control performance of the intelligent vehicle under critical maneuvers, a novel control strategy is introduced in this work. Considering that the tire cornering characteristics show high nonlinearities and uncertainties under those special driving conditions, a three-dimensional piecewise affine (PWA) identification method is proposed to realize the nonlinear modeling of the tire cornering characteristics for the first time. On this basis, the PWA model of the vehicle lateral dynamics is established. To obtain the vehicle target yaw rate for path tracking, a driver direction control model with adaptive preview time is put forward. Then, the linear quadratic optimal control method is further adopted to design multiple path tracking controllers for different working areas of the affine subsystems, thus the optimal steering angles of the front wheels can be generated to guarantee the path tracking performance for the intelligent vehicle under a wide range of driving conditions. Finally, to evaluate the performance of the proposed path tracking control strategy which considers the tire nonlinear cornering characteristics in the PWA form, the CarSim-Simulink co-simulation work is conducted. The co-simulation results show that the proposed control strategy presents significant performance advantages over the other two methodologies and demonstrates satisfactory path tracking control performance.  相似文献   

14.
Unmanned surface vehicles (USVs) are a promising marine robotic platform for numerous potential applications in ocean space due to their small size, low cost, and high autonomy. Modelling and control of USVs is a challenging task due to their intrinsic nonlinearities, strong couplings, high uncertainty, under-actuation, and multiple constraints. Well designed motion controllers may not be effective when exposed in the complex and dynamic sea environment. The paper presents a fully data-driven learning-based motion control method for an USV based on model-based deep reinforcement learning. Specifically, we first train a data-driven prediction model based on a deep network for the USV by using recorded input and output data. Based on the learned prediction model, model predictive motion controllers are presented for achieving trajectory tracking and path following tasks. It is shown that after learning with random data collected from the USV, the proposed data-driven motion controller is able to follow trajectories or parameterized paths accurately with excellent sample efficiency. Simulation results are given to illustrate the proposed deep reinforcement learning scheme for fully data-driven motion control without any a priori model information of the USV.  相似文献   

15.
In this paper, a fixed-time dual closed-loop attitude control method is investigated for a quadrotor unmanned aerial vehicle. Firstly, a fixed-time adaptive fast super-twisting disturbance observer is presented for estimating the unknown external disturbance. A modified adaptive law is employed based on an equivalent control method to obtain proper observer gains. Secondly, a fixed-time controller is designed by using a universal barrier Lyapunov function to satisfy asymmetric tracking error constraints. Then, a tracking differentiator is utilised to arrange the transition process. Finally, the implementation of the developed method in a quadrotor unmanned aerial vehicle is performed. Through stability analysis and simulation results, the effectiveness and superiority of the proposed fixed-time control method are validated.  相似文献   

16.
This paper investigates entry guidance of a capsule for pinpoint landing on Mars. In this scenario, the capsule is subject to the external disturbances caused by the atmosphere that can result in control saturation, and then undesired landing errors. To this end, a new guidance scheme to satisfy entry constraints, high-accuracy landing at high elevation sites, is proposed. The technical contributions of this work are two-fold: first, in order to mitigate the effects caused by large disturbance, a function describing the joint constraints of bank angle and slacked height is proposed; based on the nonlinear model predictive control (NMPC), a new algorithm is developed, where the constraints of dynamics, bank angle, slacked height, are sufficiently considered and precisely modeled; second, a state-space observer to improve the prediction of disturbance is introduced, which can significantly improve the accuracy of landing performance. The numerical simulations show the feasibility and validity of the proposed scheme.  相似文献   

17.
This paper addresses a finite-time rendezvous problem for a group of unmanned aerial vehicles (UAVs), in the absence of a leader or a reference trajectory. When the UAVs do not cooperate, they are assumed to use Nash equilibrium strategies (NES). However, when the UAVs can communicate among themselves, they can implement cooperative game theoretic strategies for mutual benefit. In a convex linear quadratic differential game (LQDG), a Pareto-optimal solution (POS) is obtained when the UAVs jointly minimize a team cost functional, which is constructed through a convex combination of individual cost functionals. This paper proposes an algorithm to determine the convex combination of weights corresponding to the Pareto-optimal Nash Bargaining Solution (NBS), which offers each UAV a lower cost than that incurred from the NES. Conditions on the cost functions that make the proposed algorithm converge to the NBS are presented. A UAV, programmed to choose its strategies at a given time based upon cost-to-go estimates for the rest of the game duration, may switch to NES finding it to be more beneficial than continuing with a cooperative strategy it previously agreed upon with the other UAVs. For such scenarios, a renegotiation method, that makes use of the proposed algorithm to obtain the NBS corresponding to the state of the game at an intermediate time, is proposed. This renegotiation method helps to establish cooperation between UAVs and prevents non-cooperative behaviour. In this context, the conditions of time consistency of a cooperative solution have been derived in connection to LQDG. The efficacy of the guidance law derived from the proposed algorithm is illustrated through simulations.  相似文献   

18.
This paper develops a cooperative federated reinforcement learning (RL) strategy that enables two unmanned aerial vehicles (UAVs) to cooperate in learning and predicting the movements of an intelligent deceptive target in a given search area. The proposed strategy allows the UAVs to autonomously cooperate, through information exchange of the gained experience to maximize the target detection performance and accelerate the learning speed while maintaining privacy. Specifically, we consider a monitoring model that includes a search area, a charging station, two cooperative UAVs, an intelligent deceptive uncertain moving target, and a fake (false) target. Each UAV is equipped with a limited-capacity rechargeable battery and a communication unit for exchanging the gained experience. The problem of maximizing the detection probability of the uncertain deceptive target using cooperative UAVs is mathematically modeled as a search-benefit maximization problem, which is then reformulated as a Markov decision process (MDP) due to the uncertainty nature of the problem. Because there is no prior information on the targets’ movement, a cooperative RL, is utilized to tackle the problem. The proposed cooperative RL-based algorithm is a distributed collaborative mechanism that enables the two UAVs, i.e., agents, to individually interact with the operating environment and maximize their cumulative rewards by converging to a shared policy while achieving privacy. Simulation results indicate that a cooperative RL-based dual UAV system can noticeably improve the target detection probability, reduce the detection performance, and accelerate the learning speed.  相似文献   

19.
无人机是一种通过由无线控制或机身自控系统操纵的无人飞行器。无人飞机作为搭载平台装载线路巡检仪器进行输电线路巡线是一门新兴的技术,对其研究需要跨多个学科领域,研究难度和深度要求较高,集安全、高效、全面于一身。现代无人机面临技术和安全的多重考验,提高无人机巡线的技术水平,解决无人机巡线的安全问题,是现代无人机研究须重点解决的问题。  相似文献   

20.
微观视角下无人机产业军民融合水平评价研究   总被引:1,自引:0,他引:1       下载免费PDF全文
姜梁  张庆普 《科研管理》2018,39(8):110-119
无人机产业发展关系我国国防军工核心能力建设以及数字化低空产业经济的构建。随着国家军民融合深度发展战略的布局,我国无人机产业呈现出爆炸式增长趋势。无人机产业的深度发展与其军民融合水平评价体系建设紧密相关。目前学术界对于军民融合水平评价研究还只停留在宏观层面。本文基于扎根理论和模糊层次分析方法,构建了一种从微观视角开展无人机产业军民融合深度发展研究的理论方法。首先进行无人机产业军民融合问题的数据采集、数据编码和饱和度校验,确定融合水平影响要素的理论模型,然后将影响要素的选择性编码和主轴编码分别作为4个一级指标因素和15个二级指标因素输入,基于德尔菲方法和层次分析法,进行因素输入的权重确定和融合水平的评估。最后文中完成了3家国有无人机企业军民融合水平的实证分析,针对分析结果,提出了军民融合深度发展建设意见。本文提出的理论分析方法也可拓展应用于国家相关主管部门及其它产业。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号