首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我们知道,在纯电阻电路中,电阻两端的电压和通过电阻的电流呈线性关系,也就是U—I曲线是条过原点的直线,此电阻为线性电阻。但是实际电路中由于各种因素影响,U—I曲线可能不是直线,即为非线性电阻。笔者就下面其非线性电阻的几个问题进行探讨。一、在非线性电阻中某一状态下的导体电阻例:一个标有“220V、60W”的白炽灯炮,加上的电压U由零逐渐增大到220V,在此过程中,电压U和电流I的关系可用图象表示,题中绘出的四个图线(如图1),肯定不符合实际的是:图1解析:U—I图象的意义:斜率表示电阻,斜率越大,电阻越大,如果是曲线,可以用该点曲线的…  相似文献   

2.
向治 《物理教学探讨》2005,23(20):27-28
在解决图象问题时往往需要搞清图象的物理意义和图象中所给的隐含条件,找出必要的信息,图象问题才可得到突破。1图象与斜率在理解图象斜率时要搞清斜率是某点切线的斜率还是该点和原点边线的斜率。如在s-t图象中某点切线的斜率表示该时刻的瞬时速度,而该点与原点边线的斜率则表示在某段时间的平均速度。在v-t图中某点切线的斜率表示该时刻的瞬时加速度,该点与原点连线的斜率则表示平均加速度。在导体伏安特性曲线(非线性元件)中,某点与原点连线的斜率表示该点的电阻大小,而该点切线的斜率没有物理意义。在闭合电路的伏安特性曲线中斜率表示…  相似文献   

3.
导体中电流I和电压U关系可以用图线来表示。用纵轴表示电流I,用横轴表示电压U,画出的I-U 图线叫做导体的伏安特性曲线。线性元件的伏安特性曲线是过坐标原点的直线,其斜率等于导体电阻的倒数;非线性元件的伏安特性曲线不是直线,其上各点的纵横坐标的比值等于对应端电压或电流的电阻的倒数。这里我们主要研究非线性元件的伏安特性曲线。  相似文献   

4.
杨中甫 《中学理科》2006,(10):34-35
导体中电流I和电压U关系可以用图线来表示.用纵轴表示电流I,用横轴表示电压U,画出的I—U图线叫做导体的伏安特性曲线.线性元件的伏安特性曲线是过坐标原点的直线,其斜率等于导体电阻的倒数;非线性元件的伏安特性曲线不是直线,其上各点的纵坐标与横坐标的比值等于对应端电压或电流时的电阻的倒数.这里我们主要研究非线性元件的伏安特性曲线.  相似文献   

5.
学生用伏安法测量灯丝的电阻时,绘出了如图1所示的伏安特性曲线,从图上看出灯丝两端的电压并不随电流线性变化。让学生自己分析原因,他们也都说出了是电流通过灯丝时引起灯丝发热,改变了灯丝温度,灯丝电阻发生了变化。严格的说,灯丝也并不是真正意义上的线性元件。随即笔者便问学生这样的问题:在某一特定状态(U,I)下怎样用U-I图线求出灯丝的电阻?其中就有一部分学生说,图线上某一点的斜率表示此时的电阻。他们还举了一些相似的例子,如:s-t图线的斜率表示质点某时刻的速度,v-t图线的斜率表示某时刻加速度等等。  相似文献   

6.
1.导体的伏安特性I-U图像 导体中电流I和电压U的关系可以用图线来表示.用纵轴表示电流I,用横轴表示电压U,画出的I-U图线叫做导体的伏安特性曲线.线性元件的伏安特性曲线是过坐标原点的直线,其斜率等于导体电阻的倒数;非线性元件的伏安特性曲线不是直线,其上各点的纵、横坐标的比值等于相应电压或电流的电阻的倒数.  相似文献   

7.
电阻是物理学中的一个重要的元件,下面我们来探究与电阻有关的一些图象. 探究一 电阻的U-I(伏安)特性曲线当电阻为定值时电阻的伏安图线是一条过原点的斜直线,其斜率为电阻值的大小;当电阻随温度变化时,其图线是一条过原点的曲线。其上任一点与原点连线的斜率表示该点的电阻。该点的切线的斜率不表示该点的直流电阻.曲线的斜率表示该点的动态电阻,学习无线电知识时才涉及到。  相似文献   

8.
中学物理实验中,测定电源电动势和内阻的实验电路如图1所示,实验原理是闭合电路的欧姆定律E=U+Ir,数据处理采取作图法,其U-I图象如图2所示.实际上,图2可以认为是确定电路中滑动变阻器R的"伏-安特性曲线".由部分电路的欧姆定律U=IR可知,导体的U-I图象上某点与坐标原点连线的斜率,等于该状态下导体的电阻.由此可以看出,在电源确定的电路中,导体的电阻变小时,其两端的电压减小,电流增大,反之相反.下面举例说明滑动变阻器的"伏-安特性曲线"的应用.  相似文献   

9.
中学物理实验中,测定电源电动势和内阻的实验电路如图1所示,实验原理是闭合电路的欧姆定律E=U Ir,数据处理采取作图法,其U-I图象如图2所示。实际上,图2可以认为是确定电路中滑动变阻器尺的“伏-安特性曲线”。由部分电路的欧姆定律[U=IR可知,导体的U-I,图象上某点与坐标原点连线的斜率,等于该状态下导体的电阻。由此可以看出,在电源确定的电路中,导体的电阻变小时,其两端的电压减小,电流增大,反之相反。下面举例说明滑动变阻器的“伏-安特性曲线”的应用。  相似文献   

10.
一、知识概要1.由部分电路欧姆定律确定的U-I图线由欧姆定律得出I=U/R,这一关系用U-I图线来描述,就是一条通过原点的直线,该图线的斜率即为电阻的阻值,即R=U/I=(ΔU)/(ΔI)。如图1所示。  相似文献   

11.
如图1所示,图线a为电源的U-I图象,它表示外电路的电压随电流的变化关系,图线的纵截距为电源电动势,横截距为短路电流,斜率的绝对值为电源内阻.图线b为线性电阻的U-I图象,它表示定值的电阻的伏安特性曲线,两者的交点坐标表示该电阻接到该电源上时电路的总电流和路端电压.图中矩形U1MI1O的面积表示此时电源的输出功率,而图中矩形ENI1O的面积为电源的总功率,上述两个面积之差为电源内电路消耗的功率.  相似文献   

12.
非线性元件的电阻随外界条件的变化而变化,电流与电压不成正比,伏安特性图线不是直线而是曲线。欧姆定律对非线性电阻不适用,因此求非线性元件的功率通常是通过找出元件的"工作点"(工作时对应的电压和电流)再利用P=UI求解。下面笔者从一道竞赛题说起谈谈非线性元件功率的求解。  相似文献   

13.
华士忠 《物理教师》2006,27(10):24-25,53
1问题的来由笔者在上导体的伏安特性曲线新课时,讲到电学元件电流I和电压U的关系可以用图线来表示,画出的I-U图线叫做伏安特性曲线,在金属导体中,电流跟电压成正比,伏安特性曲线是通过坐标原点的直线(图1).具有这种伏安特性的电学元件叫做线性元件.提问学生图1中的两条直线哪一  相似文献   

14.
直流电路中的U—I图线有两种,如图1和图2所示。图1中直线OF表示部分电路欧姆定律的图线,直线的斜率等于电阻值,即R=tgα。  相似文献   

15.
李永胜 《物理教师》2006,27(6):9-19
导体的伏安特性曲线能反映导体电阻的变化情况,常见的有I-U图线和U-I图线两种(为说明问题的方便,我们用U-I图线,以下引用的例子也如此处理).一些参考书认为曲线的斜率表示电阻,其实,这种认识是错误的.在《新教材完全解读》高二物理下第9页,有这样一段内容:“利用伏安特性曲线可  相似文献   

16.
恒定电流中物理量的关系通常用图线来表示,下面介绍几种重要图线及它们的应用,供大家参考。一、导体的伏安特性曲线:I-U图线导体的伏安特性曲线是在给定导体电阻R的条件下,通过改变加在导体两端的电压而得出的电流随电压变化的图线,遵循部分电路欧姆定律(I=U/R)。对此图线要注意以下两点:  相似文献   

17.
在恒定电流中,为了更加直观的反应某元件的电压和电流的关系,我们常常选用伏安(U-Ⅰ)特征曲线来描绘.它们主要有两种:一是电阻元件对应的伏安曲线[简称电阻线,如图1(a)],其对应的电阻R=tanα;另一种是电源元件对应的伏安曲线[简称电源线,如图1(b)],其对应  相似文献   

18.
<正>在平面直角坐标系中用纵轴表示速度v,横轴表示时间t,画出的图像就是v-t图像。v-t图像反映了物体运动的速度随时间变化的规律,如图1所示:(1)图线斜率的物理意义。图线上某点切线的斜率大小表示物体的加速度大小,斜率的正负表示加速度的方向。  相似文献   

19.
非线性元件是一种通过它的电流与加在它两端的电压不成正比的元器件材料,即它的U-I图线是非线性的曲线.如白炽灯、光敏电阻、热敏电阻、晶体二极管、硅光电池等.求解含有非线性元件的电路问题时,通常要借助非线性元件的U-I图像寻找该非线性元件的工作点(即此刻非  相似文献   

20.
下面的题目是1992年高考物理试卷中的第10题: 两电阻R_1、R_2的电流I和电压U的关系图线如图1所示,可知两电阻的大小之比R_1:R_2等于 (A)1:3. (B)3:1. C3:1. 有的考生是这样解的: 因为R=U/I=(ΔU)/(ΔI),所以,图线的斜率即为该电阻的倒数:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号