首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
<正>凸函数定义:设f(x)为定义在区间I上的函数,若对I上任意两数x1,x2和实数λ,总有f(λx1+(1-λ)x2)≤λf(x1)+(1-λ)f(x2),则称f为I上的凸函数.凸函数判定定理为:设f为I上的二阶可导函数,则f为I上的凸函数的充要条件是在I  相似文献   

2.
胡浩鑫 《考试周刊》2008,(22):111-112
凹凸性是函数的重要性质,定义为:若函数f(x)在开区间I有定义,且对任意的x1,x2∈I,t∈(0,1)均有f[tx, (1-t)x,]≥(≤)tf(x1) (1-t)f(x2|)成立,则称f(x)在区间I上是凹(凸)函数.函数凹凸性的判定常用如下定理:设f(x)在I内二阶可导,则f(x)是I上的凹(凸)函数的充要条件是f″(x)≤(≥)0,(x∈I).若f(x)在I上是凸函数,则-f(x)在I上为凹函数,所以讨论凸函数可以转化为讨论凹函数.  相似文献   

3.
孙兰敏 《考试周刊》2012,(57):47-47
本文根据上凸函数的定义,证明了若f(x)是区间I内的上凸函数,则f(x)在区间I内连续,从而进一步得出结论:若f(x)是区间I内的上凸函数,则对任意的[a,b]奂I,f(x)在区间[a,b]上有界、可积.并说明了上凸函数的连续性、有界性和可积性.  相似文献   

4.
不等式的证明是数学分析中经常遇到而且比较困难的问题,本文将对数学分析中不等式证明的常用方法作简单的归纳与总结。一、利用函数单调性证明不等式这是最常用最基本的方法。由文[1]定理7.1,若函数.f在(a,b)可导,则.f在(a,b)内递增(递减)的充要条件是f'(x)≥0(f'(x)≤0),x∈(a,b)。特别地,设函数f在(a,b)内可异,若f'(x)>0(f'(x)相似文献   

5.
本文着重说明应用微分中值定理证明不等式时,函数f(x)的选取方法,介绍一些用初等数学方法不易证明的或证明步骤较繁的不等式,而用微分中值定理可以简捷地解决的情形,其中关键是要选择好函数f(x)。微分中值定理是:“若函数f(x)在闭区间[a,b]上连续,在开区间(a,b)内可导,则在开区间(a,b)内至少有一点ξ,使得 f′(ξ)=(f(b)-f(a))/(b-a)”。用微分中值定理证明不等式的主要依据是选定符合微分中值定理条件的函数f(x)后,若在所讨论的区间内有m相似文献   

6.
1凸函数的定义及性质 凸函数的定义当x∈区间I时,若函数f( x)满足f″( x)≤(≥)0恒成立且f″( x)=0的解集是孤立的点集,即f′( x)是减(增)函数,则f( x)是I上的上(下)凸函数。  相似文献   

7.
众所周知,定义在某区间I上的函数:y=f(x),若存在二阶导数,则下面两个不等式成立。(参考文[1]) (甲)当x∈I,恒有y″>0(这时f(x)为下凸函数)  相似文献   

8.
<正>1凸函数的定义及性质凸函数的定义当x∈区间I时,若函数f(x)满足f″(x)≤(≥)0恒成立且f″(x)=0的解集是孤立的点集,即f'(x)是减(增)函数,则f(x)是I上的上(下)凸函数.例如,f(x)=xα(0<α<1,x>0),g(x)=logax(a>1,x>0),h(x)=sinx(0≤x≤π)都是上凸函数.凸函数的性质1函数f(x)是区间I上的上凸函  相似文献   

9.
<正>不等式证明一直是同学们学习的难点,主要是因为其涉及的范围较广,很多同学不知道从哪里下手。一般来讲,主要利用基本不等式来证明,而有些题则需要运用特殊不等式,比如柯西不等式、琴生不等式、排序不等式等,下面就主要谈谈琴生不等式的运用。琴生不等式:设函数f(x)是区间I上的连续函数,若对任意的x_1,x_2∈I,有不等式  相似文献   

10.
函数是高中数学的重要内容和主千知识,而导数知识在研究函数图象、函数零点、不等式证明以及不等式恒成立等诸多问题中亦有着广泛的应用.本文以2012年福建省高考中的函数试题举例阐述. 一、函数的凹凸性与拐点的有关性质 应用导数知识除了研究函数的图象与性质,还常用二阶导数研究函数的凹凸性与拐点. 性质1:已知函数f(x)在其定义域上二阶可导,若f"(x)>0恒成立,则函数f(x)为凹函数;若f″(x)<0恒成立,则函数f(x)为凸函数(允许在一些孤立点处f″(x)=0).  相似文献   

11.
柳高稳 《甘肃教育》2020,(4):187-187
一、函数凹凸性的概念及基本性质探讨。定义设f为定义在区间I上的函数,若对任意两点x1,x2和实数0<λ<1,总有f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2),则称f为I上的凸函数;反之,如果总有不等式f[λx1+(1-λ)x2]≥λf(x1)+(1-λ)f(x2),则称f为I上的凹函数。  相似文献   

12.
不等式是初等数学的重要内容之一,在初等数学和高等数学中都广为应用,证明不等式的方法很多,但有的比较烦琐,如果用导数便简单明了,本文试说明导数在证明不等式中的应用.一、用微分中值定理证明不等式微分中值定理:若函数f(x)满足条件:(i)在闭区间〔a,b〕上连续;(ii)在开区间(a,b)内可导,则在区间(a,b)内至少存在一点C,使得f(b)-f(a)=f′(c)(b-a)若不等式的一端是某一个函数F(x)在两点之差F(b)-F(a),则在区间〔a,b〕上利用微分中值定理,再将F′(C)适当放大或缩小.  相似文献   

13.
我们知道,不等式的证明方法繁多,各种方法各显其能,一般来说可分为两大类:一类是初等方法,另一类是高等方法。下面浅谈数学分析中所诱导出关于不等式的若干证法。一、单调性:定理:区间I上的可导函数f(x),如果在I内部的x恒有f′(x)>O)(n时(m,n均为自然数)(1+n)m>(1+m)~n  相似文献   

14.
许多《数学分析》教材中,在讲了拉格朗日中值定理以后,立即推得下面的结果。定理1 设函数f(z)在区间I上可导,且f′(x)≡0,则f(x)在区间I上必为一常数。这个定理的条件比较强,本文要证明,定理1的条件可以减弱,而不改变其结论。为了说明这个问题,我们需要下面的引理。  相似文献   

15.
一、选择题:1.下列结论不正确的是( ). A.若f'(x0)存在,则f(x)在x=x0处有定义B.在区间I上,f'(x)>0是f(x)在I上为增函数的充分条件C.若f'(x0)=0,则函数f(x)在x=x0处有极值D.若f(x)在x0处可导,则f(x)的图象在(x0,f(x0))处有切线  相似文献   

16.
积分的计算有很强的技巧性,有些题目利用一般方法计算很繁琐,甚至有的很难得到正确结果.而恰当地利用被积函数与积分区间的对称性可以使积分计算化繁为简.如此可以达到事半功倍的效果.定理1:设 f(x)在[-a,a]上连续,且为奇函数,则∫_(-a)~af(x)dx=0;若 f(x)在[-a,a]上为偶函数,则∫_(-a)~af(x)dx=2∫_0~af(x)dx.此定理的证明许多教材已经给出,在此省略.注:定理中的函数必须是对称区间上的奇、偶函数,才会有定理的结论.例1:计算 I=∫_-1~1|x|In(x (1 x~2)~(1/2))dx解;因为区间[-1,1]为对称区间,且被积函数 f(x)=|x|In(x (1 x~2)~(1/2))为连续的奇函数,所以由定理1,可得 I=0.  相似文献   

17.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

18.
<正>本文讨论导来函数的若干性。首先给出导来函数的一个充分条件,这是大家熟知的,我们略去它的证明。 定理一 若f(x)在区间Ⅰ上连续,则f(x)为区间Ⅰ上的导来函数。  相似文献   

19.
琴生不等式是:若f(x)是区间L上的凸函数,ai∈L ,i=1 ,…,n ,则 ni=1f(ai)≤nf( 1n ni=1ai) .我们还有(以下把 ni=1记作 )定理 设f(x)是闭区间[a ,b]上的凸函数,ai∈[a ,b],i=1 ,…,n ,则f(ai)≥kf(b) (n -k -1 ) f(a) f(c) .①其中 k = ai-nab-a ,c= ai-kb -(n -k -1 )a .证明:任取x1、x2 ,使a 相似文献   

20.
何兴忠  张满福 《数学教学研究》2004,(8):42-42,F003,F004
设一元函数 y =f(x)的定义域为A ,且在A上连续 ,如果 y =f(x)对应的不等式 f(x) >0的解集为B ,B A ,那么对于一个给定的实数x0 也可能在B内 ,也可能在B外 ,也可能恰在B对应区间的端点处 .本文对一元不等式解集对应该区间内、外及端点处的值的意义作一说明 ,并举例说明其妙用 .1 不等式解集区间内、外及端点值的意义定理 设 y =f(x)是定义域上的连续函数 ,对应的不等式是 f(x) >0 ,则有以下结论 :(1)设不等式f(x) >0的解集为B ,则x0 ∈B f(x0 ) >0 ;(2 )设 y =f(x)的定义域为A ,不等式 f(x) >0的解为B ,若x0 B(x0 不是开区间端点值…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号