首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
代数不等式是中学中的一个重要内容,由于它本身具有完美的形式及证明的灵活性,往往可以考察学生的分析能力和应变能力,在这里仅介绍一些证明不等式常用的方法和变形技巧。 一,比较法; 要证明一个不等式A>B可以作一个差证明A—B>0;当B>0时,可以作一个商A/B>1证明 例:已知:a,b∈R~ ,n∈N,求证:(a b)(a~n b~n)≤2(a~(n 1) b~(n 1)) 证明:(a b)(a~n b~n)-2(a~(n 1) b~(n 1)) =a~(n 1) a~nb ab~n b~(n 1)-2a~(n 1)-2b~(n 1) =ab~n ba~n-a~(n 1)-n~(n 1) =a(b~n-a~n) b(a~n-b~n) =(a—b)(b~n-a~n) Ⅰ)当a>b>0时,b~n-a~n<0,a-b>0 (b~n-a~n)(a—b)<0 Ⅱ)当b>a>0时,b~n-a~n>0,a-b<0 (b~n-a~n)(a—b)<0 Ⅲ当a=b>>0时,b~n-a~n=0,a-b=0 (b~n-a~n)(a-b)=0 综上Ⅰ,Ⅱ,Ⅲ,有(a-b)(a~n b~n)-2(a~(n 1) b~(n 1))≤0 (a—b)(a~n b~n)≤2(a~(n 1) b~(n 1))  相似文献   

2.
本文介绍递推式:f(n)=a~n b~n=(a b)f(n-1)-abf(n-2),(n≥2,n∈N)和f(n)= a~n b~n c~n=(a b c)f(n-1)-(ab bc ca)f(n-2) abcf(n-3)(n≥3,n∈N)及其应用。  相似文献   

3.
因为a、b是一元二次方程x~3-(a b)x ab=0的两个根,设S_0=a~0 b~0,S_1=a b, S_2=a~2 b~2,S_2-(a b)S_1 abS_0=0 S_3=a~3 b~3,S_3-(a b)S_2 abS_0=0 S_n=a~n b~n,S_n-(a b)S_(n-1) abS_(n-2)=0 所以当n≥2时,有递推式,S_n-(a b)S_(n-1) abS_(n-2)=0 (*) 因为递推式由一元二次方程推出,结果又与一元二次方程极其类似,所以它与一元二次方程一样用途较大,下举数例说明。例1 若m~2=m 1,n~2=n 1,且m≠n,则m~5 n~5=____(江苏省第四届初中数学竞赛试题)  相似文献   

4.
<正>通过学习我们知道:1.(a+b)~2=a~2+2ab+b~22.(a+b)~3=a~3+3a~2b+3ab~2+b~33.(a+b)~n=a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…C_n~(n-1)ab~(n-1)+b~n这是二项式定理,在学习中我发现,关于(a+b)~n的展开式也可以给出如下证明:(a+b)~n是n个(a+b)相乘,属于多项式乘多项式的问题,每个(a+b)在相乘  相似文献   

5.
定理设m、n是自然数,a、b、c、d是整数,则m|(ab~n+cd~n)的一个充分条件是 m|(a+c)且m|(b-d)。证明:∵m|(a+c),∴a+c=mq。(q为整数)。从而c=mq-a。于是 ab~n+cd~n=ab~n+(mq-a)d~n =a(b~n-d~n)+mqd~n。 =(a(b-d)(b~(n-1)+b~(n-2)d…+bd~(n-2)+d~(n-1)) +mqd~n。  相似文献   

6.
由二项式定理:(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+…+C_n~nb~n,(a-b)~n=C_n~0a~n-C_n~1a~(n-1)b+…+(-1)~nC_n~nb~n相加可得 (a+b)~n+(a-b)~n =2(C_n~ca~n+C_n~2a~(n-2)b~2+C_n~4a~(n-4)b~4+…)。(*)合理利用(*)式,可解答几类难度较大的问题。  相似文献   

7.
换元法是中学数学的重要解题方法,应用极为广泛,对于某些与二次根式有关的问题,利用换元法,常常具有以简取繁、捷足先登之功效。一、用于化简例1 设0相似文献   

8.
<正>一、数列本身各部分知识的综合例1已知各项均为正数的数列{a_n}的前n项和为S_n,且满足S_1>1,6S_n=(a_n+1)(a_n+2),n∈N_+,求{a_n}的通项公式。解析:利用n≥2时S_n-S_(n-1)=a_n将已知条件6S_n=(a_n+1)(a_n+2),n∈N+转化为a_n与a_(n-1)之间的关系。由a_1=S_1=1/6(a_1+1)(a_1+2),解得a_1=1或a_1=2,由假设a_1=S_1>1,因此a_1=2。又由a_(n+1)=S_n+1-  相似文献   

9.
对于与自然教n有关的等式的证明问题,如果能够利用其特征建立一个迭代关系式,则问题可迅速获得解决。由下面几个例子,可以略见迭代法之一斑。 [例1] 已知:a b c=0,求证:(a~2 b~2 c~2)~2=2(a~4 b~4 c~4) 证明:设f(n)=a~n b~n c~n,ab bc ca=-p abc=q,为a、b、c为根的三次方程为x~3-px-q=0 由上可得(a~n b~n c~n)-p(a~(n-2) b~(n-  相似文献   

10.
指数概念从正整数指数推广到有理数指数,是深入学习指数运算的需要.本文拟从三个方面谈谈指数概念推广以后应注意些什么. 一、注意正确理解概念 1.明确指数概念推广的背景及意义正整数指数幂有五条运算性质:(1)a~n·a~n=a~(m+n);(2)a~m÷a~n=a~(m-n)(a≠0,m>n);(3)(a~m)~n=a~(mn);(4)(ab)~n=a~n·b~n;(5)(a/b)~n=a~n/b~n(b  相似文献   

11.
命题1 设三角形三边长分别为a、b、c,面积为S。则a~n b~n c~n≥2~n·3~((4-n)/4)S~(n/2)(n∈N),当且仅当a=b=c时等号成立。 这个命题是Weisenbck不等式a~2 b~2 c~2≥4 3~(1/2)S的推广形式。 证明:当n=1时,  相似文献   

12.
现行高三数学中学到了二项式定理:(a+b)~n=C_n~0a~n+a_n~1a~(n-1)b+C_n~2a~(n-2)b~2+……+C_n~nb~n。若令a=1,b=1,代入上式,就得到(1+1)~n=C_n~0+C_n~1+C_n~2+……+C_n~n,这是全组合公式,即从n个元素中一个也不取,取一个、取二个、……、取n个元素的组合总数,那么(1+2)~n的展开式的组合原理是什么呢?或者说,它的数学模型是什么?下面我们先看一个具体问题。  相似文献   

13.
<正> (a+b)n二项展开式有n+1项,(a+b+c)n三项展开式的项数可以按二项展开式办法求出.[(a+b)+c]n=C_n~0(a+b)nc0+C_n~1(a+b)n-1c1+…+C_n~r(a+b)n-rcr+…+C_n~n(a+b)0cn,其展开式的项数为(n+1)+n+(n-1)+…+2+1=(n+1)(n+2)/2,(*)  相似文献   

14.
大家熟知的牛顿二项式定理是指下面的公式:(a+b)~n=c_n~0a~n+c_n~1a~(n-1)b+c_n~2a~(n-2)b~2+…+c_n~nb~n,(n∈N) (1)式(1)的右边的式子叫(a+b)~n的二项展开式,在教科书上,公式(1)的证明通常是采用数学归纳法,在本文中,我们将给二项式定理一种新的、有趣的证法,这种证法依赖于函数方程的解。  相似文献   

15.
1·D.2·C.3·C.4·D.5·D.6·B.7·D.8·mx(m2+xy).9·42.10·3a-4.11·4、6、812·6.13·5500.14·M=ab2,N=a.15·xy(y-x)(y+x).16·(a-b+1)(a+b-1).17·x-512.18·x+522.19·能.(2n)2-(2n-2)2=(2n-2n+2)(2n+2n-2)=2(4n-2)=4(2n-1).20·9a2-4b2,56cm2.21·98和97岁;22和17岁;34和31岁;14岁和1岁.上期《“因式分解”测试卷》参考答案…  相似文献   

16.
我们知道,由二项式定理 (a b)~n=a~n C_1~na~(n-1)b … C_n~(n-1)ab~(n-1) b~n可得 (a b)~n=aM_1 b~n; (a b)~n=a~2M_2 nab~(n-1) b~n; (a b)~n=a~n abM_i b~n; …………其中,M_i(i=1,2,3,…)是整式。利用上述性质可以证明一类多项式的整除问题。兹举例如下(本文中的n均为自然数): 例1 求证(x 1)~(2n 1) x~(n 2)能被x~2 x 1整除。  相似文献   

17.
(a+b)n二项展开式有(n+1)项,(a+b+c)n三项展开式的项数可以按二项展开式办法求出:[(a+b)+c]n=C0n(a+b)nc0+C1n(a+b)n-1c1+…+Crn(a+b)n-rcr+…+Cnn(a+b)0cn,其展开式共有(n+1)+n+(n-1)+…+2+1=(n+1)(n+2)/2项.那么(a1+a2+a3+…+am)n展开式又有多少项呢?  相似文献   

18.
组合恒等式证明问题,一般难度较大,学生往往不易掌握。下面就来谈谈组合恒等式证明的几种方法。 1.置换法。在公式(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…+C_n~ra~(n-r)b~r+…+C_n~nb~n中,适当地选择某个数来置换a和b,原恒等式即可得证。例1.求证:①2~n-C_n~12~(n-1)+C_n~22~(n-2)+…+(-1)~(n-1)C_n~(n-1)2+(-1)~n=1; ②3~n-C_n~13~(n-1)+C_n~23~(n-2)+…+(-1)~(n-1)C_n~(n-1)3+(-1)~n=2~n。  相似文献   

19.
巧用公式a~2-b~2=(a+b)(a-b) 例1.计算3·5·17…,…(2~2~(n-1)+1) 解:原式=(2-1)(2+1)(2~2+1)(2~2~2+1)…,…(2~2~(n-1)+1) =(2~2-1)(2~2+1)(2~2~2+1)…,…(2~2~(n-1)+1) …… =(2~2~(n-1)-1)(2~2~(n-1)+1)=2~2~n-1。巧用a~2+b~2+c~2+2ab+2bc+2ac =(a+b+c)~2 例2.计算5+6~(1/2)+10~(1/2)+15~(1/2)/2~(1/2)+3~(1/2)+5~(1/2) 解:由(2~(1/2)+3~(1/2)+5~(1/2))~2 =2+3+5+26~(1/2)+210~(1/2)+215~(1/15) =2(5+6~(1/2)+10~(1/2)+15~(1/2)) 得5+6~(1/2)+10~(1/2)+15~(1/15)=1/2(2~(1/2+3~(1/2)+5~(1/2))~2  相似文献   

20.
最值问题中,有一类在给定条件下求最大值的问题,可用构造条件的方法求解。现介绍如下: 有关定理(柯西不等式): 对于任意实数a_i,b_i(i=1,2,…n),有:(a1b1+a2b2+…+a_nb_n)~2≤(a~21+a~22+…+a~2n)·(b~21+b~22+…+b~2n).其中,当且仅当a_i=kbi时取等号。 由柯西不等式,易得如下推论: 如果:(a~21+a~22+…+a~2n=S2(常数S>0) b~21+b~22+…+b~2n=t~2(常数t>0) 那么:a1b1+a2b2+…+a_nb_n≤S·t,当且仅当a_i/b_i=s/t(i=1,2,…,n)时,取等号,即a1b1+a2b2+…+a_nb_n有最大值s·t. 例1:已知:a2+b2+c2=1,求的最大值。 分析:为了利用推论,必须  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号