首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
一、要注意不等式成立的条件例1已知x,y缀R+,且1x+4y=1,求x+y的最小值.错解∵x,y∈R+,∴0<1x·4y≤眼12穴1x+4y雪演2=14,即xy≥16.∴x+y≥2xy姨≥216姨=8,∴x+y的最小值是8.分析上面解法中,连续进行了两次不等式变形:x+y≥2xy姨与2xy姨≥216姨,且这两个不等式中的等号不能同时成立.因为第一个不等式当且仅当x=y时等号成立,第二个不等式当且仅当1x=4y时等号成立,即只有x=2且y=8时等号成立.因此,x+y不可能等于8.正解∵1x+4y=1,∴x+y=(x+y)·穴1x+4y雪=yx+4xy+5≥2×yx·4xy姨+5=9.上式当且仅当yx=4xy,即y=2x时等号成立.将1x+4y=1与y=2x联立,…  相似文献   

2.
有些同学在做不等式的习题时,曾因一道题目的两种不同解法而争论不休,现把他们的解法原原本本地写下,仔细分析一下,以防再犯类似错误.题目:设x、yR+且x+2y=1,求1x+1y的最小值.解法一:∵x,yR+且x+2y=1∴1=x+2y叟22xy姨穴1雪即xy燮18,从而1xy姨叟8姨=22姨(2)∴1x+1y叟21xy姨=21xy姨∴1x+1y叟2×22姨=42姨,∴1x+1y的最小值为42姨.解法二:∵x,yR+且x+2y=1∴1x+1y=x+2yx+x+2yy=3+2yx+xy叟3+22yxxy姨=3+22姨∴1x+1y的最小值为3+22姨.以上两种解法看似都正确,其实不然.解法一是错的,而解法二是对的.那么解法一究竟错在哪里呢?还是让我们回…  相似文献   

3.
题目 :若 x>0 ,y>0且 x+ y≤ a( x+ y )成立 ,则 a的最小值是 (  ) .( A) 22    ( B) 2( C) 2  ( D) 2 2错解 原不等式可变形为 a≥x+ yx + y,a2≥ x+ yx+ y+ 2 xy ≥x+ yx+ y+ x+ y=12 成立 ,即 a≥ 22 ,选 A.质疑 当 x=1 ,y=3时 ,2≤ 22 ( 1 +3)不成立 ,与已知矛盾 ,因而 a的最小值不是 22 .错解看似很有道理 ,问题出在哪里 ?剖析 要使 a≥ x+ yx + y成立 ,a应不小于 x+ yx + y的最大值 ,而错解中求出x+ yx + y的最小值 ,把 x+ yx + y的最小值误认为 a的最小值 ,殊不知此最小值非彼最小值 ,因而解法是错误的 .正解 因为 ( x+ y …  相似文献   

4.
各类资料都有如下一类二元极值:题目1已知x,y∈R~+,且1/x+4/y=1,求4x+9y的最小值;题目2已知x,y∈R~+,且2x+9y=5,求2/x+1/y的最小值.此类最值,我们老师采用如下方法,以题目  相似文献   

5.
《中学数学教学参考》编辑部举办的首届中学生数学智能通讯赛中高二年级试题第18题为 :若x ,y∈R ,x y =1,则xx2 y3 yx3 y2 ≤ 83 . ( 1)(从该刊 2 0 0 4年第 5期 p .5 9提供的解答来看 ,条件“x ,y ∈R”应为“x ,y ∈R ”)类比之 ,容易证得命题 1 若x ,y ,∈R ,x y =1,则xx y2 yx2 y ≤ 43 . ( 2 )证明 因为x y2 =y2 -y 1=( y-12 ) 2 34>0 ,x2 y>0 ,所以不等式 ( 2 )等价于3 [x(x2 y) y(x y2 ) ] ≤ 4(x y2 ) (x2 y) x3 y3 4x2 y2 -2xy≥ 0 (x y) 3-3xy(x y) 4x2 y2 -2xy≥ 0 4x2 y2 -5xy 1≥ 0 (xy-14 ) (xy-1)≥ 0 ( 3…  相似文献   

6.
背景:在《数学教学通讯》2000年第七期求一类无理函数最值的新方法中有这么一个定理:若x1,x2,y1,y2∈R,则有x21 y12 x22 y22≥(x1 x2)2 (y1 y2)2(“=”当且仅当yx11=yx22取得)此定理不妥.“=”当且仅当yx11=xy22时取得是错误的,因为当且仅当为充要条件,即有yx11=x2y2x21 y12 x2  相似文献   

7.
联想是以观察为基础,对研究的对象或问题,联想已有的知识和经验进行形象思维的方法.通过联想,构造相应的条件,从而解决问题.【例】 设x、y∈R+,且x+y=1,求证:(x+2)2+(y+2)2≥252.联想一:巧用“a2+b2≥2ab”法1:直接法由x+y=1,得(x+2)2+(y+2)2=x2+y2+4x+4y+8=(x+y)2+4(x+y)+8-2xy=13-2xy又∵x、y∈R+,由均值不等式,∴x+y≥2xy,即xy≤14,则-2xy≥-12.故(x+2)2+(y+2)2=13-2xy≥13-12=252.证毕.法2:间接法令a=x+2,b=y+2,则a+b=(x+2)+(y+2)=x+y+4=5(定值)∵a2+b2≥2ab,两边同时加上a2+b2得a2+b2≥(a+b)22即(x+2)2+(y+2)2≥[(x+2)+(y+2)]22=252.…  相似文献   

8.
观察下面三个问题 :( 1 )设a、b、c为△ABC的三边 .求证 :a2 b(a -b) +b2 c(b -c) +c2 a(c-a)≥ 0 .①(第 2 4届IMO)( 2 )若x、y、z∈R+,则x·x +yx +z+y·y +zy +x+z·z+xz+y≥x +y +z.②( 1 992 ,国际“友谊杯”数学邀请赛 )( 3)设x、y、z∈R+,求证 :x2 ·y +zy +x+y2 ·z+xz+y+z2 ·x +yx +z≥xy +yz+zx .③这三个不等式均不难证明 ,此处从略 .今将揭示他们之间隐含的内在联系 .1 .建立对应关系 ,揭示①可转化为②众所周知 ,对于任意△ABC的三边a、b、c,总可找到这样的正数x、y、z,使得a =y +z,b =z+x ,c =x +y .于是 ,式①化为(y+z…  相似文献   

9.
设ai和bi(i=1,2,…,n)都是实数,则(a12 a22 … a2n)(b12 b22 … b2n)≥(a1b1 a2b2 … anbn)2(1)(1)当且仅当ai=kbi(i=1,2,…n)时成立等号,这就是通常所说的哥西不等式.由该不等式很容易得到一个推,实际上,在不等式(1)中,令ai=xiyi,bi=yi(i=1,2…n)得:x12y1 xy222 … yx2nn(y1 y2 … yn)≥(x1 x2 … xn)2xy121 yx222 … yx2nn≥(x1 x2 … xn)2y1 y2 … yn(2)我们把不等式(2)称为哥西不等式推广即:设xi∈R,yj∈R (i=1,2,…,n),则yx121 yx222 … yx2nn≥(xy11 xy22 …… xynn)2,当且仅当xy11=yx22=…=yxnn时成立等号.哥西不等式推广在处理…  相似文献   

10.
在高中代数不等式部分有这样一个结论:若x、y∈R+,则x+y/2≥xy,当且仅当■xy时取等号.该不等式称为均值不等式.利用均值不等式可推导出以下三个结论.  相似文献   

11.
482.设k是一个给定的实数,试求出所有的实数f:R→R,使得对于任何的x,y∈R,都有f(x2?y2?f(?k))=xf(x)?yf(y)+k.483.求出所有的整数对(x,y),使得x3?y3?x2y+xy2+1002x2?1002y2?3x+3y=2004.注本题于2004年7月提出并解答于江苏省扬中市.484.设k是一个给定的实数,x和y是实数,且2x2+2y2?5xy+x+y+k=0,试求x+y,xy,x2+y2及x2+y2?xy这四个数的取值范围(值域).485.求出适合于(y?2)x2+yx+2y=0的所有整数对(x,y).486.求出所有的整数n,使得20n+2整除2003n+2002.487.(1)设k是一个给定的实数,试求出所有的函数f:R→R,使得对于任何的x,y∈R,都有f(x3?y3+k)=…  相似文献   

12.
题已知x、y∈R 满足4/x 9/y=1,则xy有 A.最小值12 B.最大值12 C.最小值144 D.最大值144  相似文献   

13.
在学习了均值不等式(x+y/2)≥xy~(1/2),x>0,y>0之后,我们有下面的结论:(1)若x>0,y>0,xy=p(p为大于0的常数),则x+y有最小值2 p,当且仅当x=y=p时取得.(2)若x>0,y>0,x+y=s(s为大于0的常数),则xy有最大值14s2,当且仅当x=y=12s时取得.这两个结论依均值不等式,易于证明.下面我们进一步讨论如下两个问题:问题1若x>0,y>0,xy=p(p为大于0的常数)问xk+yl(k>0,l>0)有最小值吗?问题2若x>0,y>0,x+y=s(s为大于0的常数)问xkyl(k>0,l>0)有最大值吗?我们有如下结论:结论1若x>0,y>0,xy=p(p为大于0的常数),xk+yl(k>0,l>0)有最小值,即(xk+yl)min=(k+l)kpkklllk+11,当且仅当x=lkk1+lpkl+l取到最小值.结论2若x>0,y>0,x+y=s(s为大于0的常数),xkyl(k>0,l>0)有最大值,即(xkyl)max=sk+lkkll(k+l)k+l,当且仅当x=kk+sl取到最大值.下面我们以导数为工具证明这两个结论.引理[1](极值的第一充分条件)设f...  相似文献   

14.
一、概念不清造成的错解1.集合A={x∈R|y=2x2+1},B={y∈R|y=2x2+1},则A与B的关系是.错解:∵x∈R,y∈R,y=2x2+1,∴A=B剖析:∵A中的元素是x∈R,即A=R,B的元素是y,又y=x2+1≥1,B={y|y≥1},故正确答案是B真包含于A·二、忽视讨论造成的错解2.若集合A={x∈R|ax2+2x+1=0,a∈R}是单元素集,则a=.错解:依题意,二次方程ax2+2x+1=0有二等实根,∴Δ=4-4a=0,即a=1·剖析:∵a∈R,∴应分a=0和a≠0两种情况讨论,当a=0时,x=-21,合题意,当a≠0时,Δ=0,得a=1,∴正确答案是a=0或1.3.集合A={x|x2-3x+2=0},B={x|ax-2=0}若B真包含于A,求实数a组成的集合…  相似文献   

15.
美国《数学杂志》2005年二月问题征解1714:设m,n,x,y,z∈R+,且x+y+z=1,证明:44()()()()x ymx+ny my+nx+my+nz mz+ny421()()3()z+mz+nx mx+nz≥m+n.(1)文[1]将其推广为:设λ,ai∈R+(i=1,2,n),且1niia=∑=1,an+1=a1,则当k≥4或k≤0时,有321(1)(1)(1)nk kii i i i ia naλa aλaλ?=++∑++≥+.本文在文[1]的基础上对(1)式进行再推广:命题1设m,n,x,y,z∈R+,且x+y+z=1,α,β,γ∈R+,且α?(β+γ)=2,则()()()()x ymx ny my nx my nz mz nyαα+β+γ++β+γ1()()3()zmz nx mx nz m nα++β+γ≥+β+γ.命题2设m,n,x,y,z∈R+,且x+y+z=1,β,γ,l∈…  相似文献   

16.
若x,y∈R+,则 x+y≥2√xy(*),这是众所周知的基本不等式.本文利用不等式(*)给出一类难度较大的分式不等式的简洁证明,相信能够引起同学们的浓厚兴趣.  相似文献   

17.
颜学华 《中学理科》2004,(10):41-41
现行高二 (上 )《数学》课本 (试验修订本必修 ) (人教版 ,2 0 0 0年第 2版 )第 1 0页例 1给出 :定理 1 已知x ,y都是正数 ,1 )如果积xy是定值P ,那么当且仅当x =y时 ,和x y有最小值 2p ;2 )如果和x y是定值S ,那么当且仅当x =y时 ,积xy有最大值 14 S2 .实际上 ,可把此最值定理推广为以下适用结论 .定理 2 设x ,y>01 )若xy =定值P ,则当且仅当 |x -y|取最小值时 ,x y取最小值 ;|x-y|取最大值时 ,x y最大值 ;2 )若x y=定值S ,则当且仅当 |x -y|取最小值时 ,xy取最大值 ;|x-y|取最大值时 ,xy取最小值 .证明 :1 )由x y =|x -y| 2 4…  相似文献   

18.
一个不等式的推广   总被引:2,自引:0,他引:2  
文 [1 ]中有如下一个不等式 :设 0 相似文献   

19.
例已知x,y∈R ,常数a,b∈R ,且满足a/x b/y =1,求x y的最小值.错解一因为x,y∈R ,所以x y≥2(xy)~(1/2),当且仅当x=y时取等号.由x=y及a/x b/y=1解得x=y=a b,所以(x y)mm=2(a b).  相似文献   

20.
2005年重庆卷(理工农医类)第5题:若x,y是正数,则(x 21y)2 (y 21x)2的最小值是()A.3B.27C.4D.29解法1(x 21y)2 (y 21x)2≥2(x 21y)(y 12x)=2(xy 41xy 1)≥2(2xy41xy 1)=4,当且仅当x 21y=y 21xxy=41xy时,即x=y=22时取等号.所以所求最小值为4,故选C.解法2(x 21y)2 (y 21x)2≥21(x  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号