首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anatomy is an essential subject of the medical curriculum. Despite its relevance, the curricular time and logistical resources devoted to teaching anatomy are in decline, favoring the introduction of new pedagogical approaches based on computer-assisted learning (CAL). This new pedagogical approach provides an insight into students' learning profiles and features, which are correlated with knowledge acquisition. The aim of this study was to understand how training with CAL platforms can influence medical students' anatomy performance. A total of 611 medical students attending Musculoskeletal Anatomy (MA) and Cardiovascular Anatomy (CA) courses were allocated to one of three groups (MA Group, CA Group, and MA + CA Group). An association between the performance in these anatomy courses and the number of CAL training sessions was detected. In the MA Group (r = 0.761, P < 0.001) and the MA + CA Group (r = 0.786, P < 0.001), a large positive correlation was observed between musculoskeletal anatomy performance and the number of CAL training sessions. Similarly, in the CA Group (r = 0.670, P < 0.001) and the MA + CA Group (r = 0.772, P < 0.001), a large positive correlation was observed between cardiovascular anatomy performance and the number of CAL training sessions. Multiple linear regression models were performed, considering either musculoskeletal or cardiovascular anatomy performance as the dependent variable. The results suggest that using CAL platforms to study has a positive dose-dependent effect on anatomy performance. Understanding students' individual features and academic background may contribute to the optimization of the learning process.  相似文献   

2.
A concern on the level of anatomy knowledge reached after a problem‐based learning curriculum has been documented in the literature. Spatial anatomy, arguably the highest level in anatomy knowledge, has been related to spatial abilities. Our first objective was to test the hypothesis that residents are interested in a course of applied anatomy after a problem‐based learning curriculum. Our second objective was to test the hypothesis that the interest of residents is driven by innate higher spatial abilities. Fifty‐nine residents were invited to take an elective applied anatomy course in a prospective study. Spatial abilities were measured with a redrawn Vandenberg and Kuse Mental Rotations Test in two (MRT A) and three (MRT C) dimensions. A need for a greater knowledge in anatomy was expressed by 25 residents after a problem‐based learning curriculum. MRT A and C scores obtained by those choosing (n = 25) and not choosing (n = 34) applied anatomy was not different (P = 0.46 and P = 0.38, respectively). Percentage of residents in each residency program choosing applied anatomy was different [23 vs. 31 vs. 100 vs. 100% in Family Medicine, Internal Medicine, Surgery, and Anesthesia, respectively; P < 0.0001]. The interest of residents in applied anatomy was not driven by innate higher spatial abilities. Our applied anatomy course was chosen by many residents because of training needs rather than innate spatial abilities. Future research will need to assess the relationship of individual differences in spatial abilities to learning spatial anatomy. Anat Sci Ed 2:107–112, 2009. © 2009 American Association of Anatomists.  相似文献   

3.
Spatial ability is an important factor in learning anatomy. Students with high scores on a mental rotation test (MRT) systematically score higher on anatomy examinations. This study aims to investigate if learning anatomy also oppositely improves the MRT‐score. Five hundred first year students of medicine (n = 242, intervention) and educational sciences (n = 258, control) participated in a pretest and posttest MRT, 1 month apart. During this month, the intervention group studied anatomy and the control group studied research methods for the social sciences. In the pretest, the intervention group scored 14.40 (SD: ± 3.37) and the control group 13.17 (SD: ± 3.36) on a scale of 20, which is a significant difference (t‐test, t = 4.07, df = 498, P < 0.001). Both groups show an improvement on the posttest compared to the pretest (paired samples t‐test, t = 12.21/14.71, df = 257/241, P < 0.001). The improvement in the intervention group is significantly higher (ANCOVA, F = 16.59, df = 1;497, P < 0.001). It is concluded that (1) medical students studying anatomy show greater improvement between two consecutive MRTs than educational science students; (2) medical students have a higher spatial ability than educational sciences students; and (3) if a MRT is repeated there seems to be a test effect. It is concluded that spatial ability may be trained by studying anatomy. The overarching message for anatomy teachers is that a good spatial ability is beneficial for learning anatomy and learning anatomy may be beneficial for students' spatial ability. This reciprocal advantage implies that challenging students on spatial aspects of anatomical knowledge could have a twofold effect on their learning. Anat Sci Educ 6: 257–262. © 2013 American Association of Anatomists.  相似文献   

4.
Spatial ability (SA) is the cognitive capacity to understand and mentally manipulate concepts of objects, remembering relationships among their parts and those of their surroundings. Spatial ability provides a learning advantage in science and may be useful in anatomy and technical skills in health care. This study aimed to assess the relationship between SA and anatomy scores in first- and second-year medical students. The training sessions focused on the analysis of the spatial component of objects' structure and their interaction as applied to medicine; SA was tested using the Visualization of Rotation (ROT) test. The intervention group (n = 29) received training and their pre- and post-training scores for the SA tests were compared to a control group (n = 75). Both groups improved their mean scores in the follow-up SA test (P < 0.010). There was no significant difference in SA scores between the groups for either SA test (P = 0.31, P = 0.90). The SA scores for female students were significantly lower than for male students, both at baseline and follow-up (P < 0.010). Anatomy training and assessment were administered by the anatomy department of the medical school, and examination scores were not significantly different between the two groups post-intervention (P = 0.33). However, participants with scores in the bottom quartile for SA performed worse in the anatomy questions (P < 0.001). Spatial awareness training did not improve SA or anatomy scores; however, SA may identify students who may benefit from additional academic support.  相似文献   

5.
A three‐dimensional appreciation of the human body is the cornerstone of clinical anatomy. Spatial ability has previously been found to be associated with students' ability to learn anatomy and their examination performance. The teaching of anatomy has been the subject of major change over the last two decades with the reduction in time spent on dissection and greater use of web‐based and computer‐based resources. In this study, we examine whether the relationship between spatial ability and performance in anatomy examinations is sustained in a contemporary curriculum. A comparison of students' performance in a series of tests of spatial ability to their anatomy examination scores in biomedical sciences course exhibited only weak association (r = 0.145 and P = 0.106). This has implications for the use of spatial ability as a predictor of success in introductory subjects in the teaching of anatomy. Anat Sci Educ 7: 289–294. © 2013 American Association of Anatomists.  相似文献   

6.
Visual-spatial abilities are considered a successful predictor in anatomy learning. Previous research suggest that visual-spatial abilities can be trained, and the magnitude of improvement can be affected by initial levels of spatial skills. This case-control study aimed to evaluate (1) the impact of an extra-curricular anatomy dissection course on visual-spatial abilities of medical undergraduates and (2) the magnitude of improvement in students with initially lower levels of visual-spatial abilities, and (3) whether the choice for the course was related to visual-spatial abilities. Course participants (n = 45) and controls (n = 65) were first and second-year medical undergraduates who performed a Mental Rotations Test (MRT) before and 10 weeks after the course. At baseline, there was no significant difference in MRT scores between course participants and controls. At the end of the course, participants achieved a greater improvement than controls (first-year: ∆6.0 ± 4.1 vs. ∆4.9 ± 3.2; ANCOVA, P = 0.019, Cohen's d = 0.41; second-year: ∆6.5 ± 3.3 vs. ∆6.1 ± 4.0; P = 0.03, Cohen's d = 0.11). Individuals with initially lower scores on the MRT pretest showed the largest improvement (∆8.4 ± 2.3 vs. ∆6.8 ± 2.8; P = 0.011, Cohen's d = 0.61). In summary, (1) an anatomy dissection course improved visual-spatial abilities of medical undergraduates; (2) a substantial improvement was observed in individuals with initially lower scores on the visual-spatial abilities test indicating a different trajectory of improvement; (3) students' preferences for attending extracurricular anatomy dissection course was not driven by visual-spatial abilities.  相似文献   

7.
Spatial understanding of complex anatomical concepts is often a challenge for learners, as well as for educators. It is even more challenging for students with low mental spatial abilities. There are many options to teach spatial relationships, ranging from simple models to high-end three-dimensional (3D) virtual reality tools. Using a randomized controlled trial design, this study explored the use of a unique combination of deictic and iconic hand gestures to enhance spatial anatomical understanding, coining the term “Air Anatomy”. The control group (n = 45) was given a lecture on the anatomy of extraocular muscles, while the intervention group (n = 49) received the same lecture including “Air Anatomy” hand gestures. When compared to the control group, the post-test scores for the intervention group were significantly higher for basic recall (P < 0.001; Mann–Whitney U test) and for the application of knowledge (P = 0.015; Mann–Whitney U test). Students with low to moderate spatial ability (as assessed by a mental rotation test) were found to benefit most by this technique. Students in the intervention group also reported a lower extrinsic cognitive load and higher germane load, when compared to the control group. An instructional skills questionnaire survey indicated the effectiveness of this technique in improving overall classroom experience. Feedback of the students in the intervention group was also favorable for instruction using “Air Anatomy”. The study suggests that “Air Anatomy” is a useful, “no-cost”, accessible method that aids spatial understanding of anatomical concepts.  相似文献   

8.
Spatial abilities have been correlated to anatomy knowledge assessment and spatial training has been found to improve spatial abilities in previous systematic reviews. The objective of this systematic review was to evaluate spatial abilities training in anatomy education. A literature search was done from inception to 3 August 2017 in Scopus® and several databases on the EBSCOhost platform. Citations were reviewed and those involving anatomy education, an intervention, and a spatial abilities test were retained and the corresponding full-text articles were reviewed for inclusion. Before and after training studies, as well as comparative training programs, relating a spatial training intervention to spatial abilities were eligible. Of the 2,405 citations obtained, 52 articles were identified and reviewed, yielding eight eligible articles. Instruction in anatomy and mental rotations training were found to improve spatial abilities. For the seven studies retained for the meta-analysis that included the effect of interventions on spatial abilities test scores, the pooled treatment effect difference was 0.49 (95% CI [0.17; 0.82]; n = 11) improvement. For the two studies that included the practice effect on spatial abilities test scores in a control group, the pooled treatment effect difference was 0.47 (95% CI [−0.03; 0.97]; n = 2) improvement. In these two studies, the impact of the intervention on spatial abilities test scores was found despite the practice effect. Evidence was found for improvement of spatial abilities in anatomy education using instruction in anatomy and mental rotations training.  相似文献   

9.
Polarized light imaging (PLI) is a new method which quantifies and visualizes nerve fiber direction. In this study, the educational value of PLI sections of the human brainstem were compared to histological sections stained with Luxol fast blue (LFB) using e-learning modules. Mental Rotations Test (MRT) was used to assess the spatial ability. Pre-intervention, post-intervention, and long-term (1 week) anatomical tests were provided to assess the baseline knowledge and retention. One-on-one electronic interviews after the last test were carried out to understand the students’ perceptions of the intervention. Thirty-eight medical students, (19 female and 19 males, mean age 21.5 ± SD 2.4; median age: 21.0 years) participated with a mean MRT score of 13.2 ± 5.2 points and a mean pre-intervention knowledge test score of 49.9 ± 11.8%. A significant improvement in both, post-intervention and long-term test scores occurred after learning with either PLI or LFB e-learning module on brainstem anatomy (both P < 0.001). No difference was observed between groups in post-intervention test scores and long-term test scores (P = 0.913 and P = 0.403, respectively). A higher MRT-score was significantly correlated with a higher post-intervention test score (rk = 0.321; P < 0.05, respectively), but there was not a significant association between the MRT- and the long-term scores (rk = −0.078; P = 0.509). Interviews (n = 10) revealed three major topics: Learning (brainstem) anatomy by use of e-learning modules; The “need” of technological background information when studying brainstem sections; and Mnemonics when studying brainstem anatomy. Future studies should assess the cognitive burden of cross-sectional learning methods with PLI and/or LFB sections and their effects on knowledge retention.  相似文献   

10.
Medical professionalism is a multifaceted paradigm and is an essential component of medical education. Gross anatomy is a laboratory to teach professionalism, and promoting critical reflection in medical students is a prerequisite to furthering professionalism. The aim of this study was to determine if professionalism case discussions during a Gross Anatomy course improve students' reflections using a validated reflection instrument (12 items; five‐point Likert scale where 1 = Disagree, 2 = Disagree with reservation, 3 = Neutral, 4 = Agree with reservation, 5 = Agree). Four facilitated reflection sessions were aimed at fostering reflective capacity through reflection on elements of professionalism. Results did not show a significant change between pre‐and postintervention reflection scores (3.45 ± 0.61 vs. 3.48 ± 0.51; P = 0.82). Historical control students were found to have significantly higher reflection scores when compared with postintervention students (3.91 ± 0.53 vs. 3.48 ± 0.51; P < 0.001). However, the historical control students were found to have significantly higher professionalism scores (P = 0.001) as compared with the intervention students. Student satisfaction was high, with 25 of 28 (89.2%) students reporting that the sessions should be included as a component of future anatomy courses. While reflection scores were not significantly increased as a result of the intervention, students expressed appreciation for the opportunity to discuss professionalism issues related to the dissection of cadavers. Additionally, the intervention students had both lower professionalism scores and lower reflection scores, which supports the idea that highly professional students are more capable of reflecting on professionalism. Future studies should determine whether this case discussion intervention improves objective measures of professionalism. Anat Sci Educ 7: 191–198. © 2013 American Association of Anatomists.  相似文献   

11.
Spatial visualization, the ability to mentally rotate three-dimensional (3D) images, plays a significant role in anatomy education. This study examines the impact of technical drawing exercises on the improvement of spatial visualization and anatomy education in a Neuroscience course. First-year medical students (n = 84) were randomly allocated into a control group (n = 41) or art-training group (n = 43). Variables including self-reported artistic drawing ability, previous technical drawing experience, or previous anatomy laboratory exposure were gathered. Participants who self-identified as artistic individuals were equally distributed between the two groups. Students in the art-training group attended four 1-hour sessions to solve technical drawing worksheets. All participants completed two Mental Rotations Tests (MRT), which were used to assess spatial visualization. Data were also collected from two neuroscience written examinations and an anatomical “tag test” practical examination. Participants in the art-training and control groups improved on the MRT. The mean of written examination two was significantly higher (P = 0.007) in the art-training group (12.95) than the control group (11.48), and higher (P = 0.027) in those without technical drawing experience (12.44) than those with (11.00). The mean of the anatomical practical was significantly higher (P = 0.010) in those without artistic ability (46.24) than those with (42.00). These results suggest that completing technical drawing worksheets may aid in solving anatomy-based written examination questions on complex brain regions, but further research is needed to determine its implication on anatomy practical scores. These results propose a simple method of improving spatial visualization in anatomy education.  相似文献   

12.
Gross anatomy is a source of anxiety for matriculating medical students due to the large volume of information presented in a truncated timeline, and because it may be their first exposure to human cadavers. This study aimed to assess if video-based resources would affect matriculating medical students' anatomy state anxiety levels. Videos were designed to be short, YouTube-based units that served to provide orientation information about the anatomy course, dissection facilities, and available study resources to dispel anxiety around beginning their anatomy studies. To evaluate the impact of the videos, students in two consecutive matriculating years (2018 and 2019) completed the validated State-Trait Anxiety Inventory and a demographic questionnaire. The 2019 cohort (n = 118) served as the experimental group with access to the videos; while the 2018 cohort (n = 120) without video access served as a historical control. Analyses revealed that the groups were equivalent in terms of trait anxiety (P = 0.854) and anatomy state anxiety even when student video exposure was controlled (P = 0.495). Anatomy state anxiety was only significantly lower in students with prior formal anatomy exposure (P = 0.006). Further inquiry into students' prior anatomy experience identified that individuals with post-secondary dissection experience were significantly less anxious than those without formal anatomical experience (P = 0.023). These results may serve as a cautionary tale to educators; while preference for video-based instructional materials is prevalent in the literature, videos delivered on public social media platforms fail to prepare students for the psychological impact of studying human anatomy.  相似文献   

13.
Anatomy knowledge has been found to include both spatial and non‐spatial components. However, no systematic evaluation of studies relating spatial abilities and anatomy knowledge has been undertaken. The objective of this study was to conduct a systematic review of the relationship between spatial abilities test and anatomy knowledge assessment. A literature search was done up to March 20, 2014 in Scopus and in several databases on the OvidSP and EBSCOhost platforms. Of the 556 citations obtained, 38 articles were identified and fully reviewed yielding 21 eligible articles and their quality were formally assessed. Non‐significant relationships were found between spatial abilities test and anatomy knowledge assessment using essays and non‐spatial multiple‐choice questions. Significant relationships were observed between spatial abilities test and anatomy knowledge assessment using practical examination, three‐dimensional synthesis from two‐dimensional views, drawing of views, and cross‐sections. Relationships between spatial abilities test and anatomy knowledge assessment using spatial multiple‐choice questions were unclear. The results of this systematic review provide evidence for spatial and non‐spatial methods of anatomy knowledge assessment. Anat Sci Educ 10: 235–241. © 2016 American Association of Anatomists.  相似文献   

14.
Computer‐aided learning (CAL) is an integral part of many medical courses. The neuroscience course at Oxford University for medical students includes CAL course of neuroanatomy. CAL is particularly suited to this since neuroanatomy requires much detailed three‐dimensional visualization, which can be presented on screen. The CAL course was evaluated using the concept of approach to learning. The aims of university teaching are congruent with the deep approach—seeking meaning and relating new information to previous knowledge—rather than to the surface approach of concentrating on rote learning of detail. Seven cohorts of medical students (N = 869) filled in approach to learning scale and a questionnaire investigating their engagement with the CAL course. The students' scores on CAL‐course‐based neuroanatomy assessment and later university examinations were obtained. Although the students reported less use of the deep approach for the neuroanatomy CAL course than for the rest of their neuroanatomy course (mean = 24.99 vs. 31.49, < 0.001), deep approach for CAL was positively correlated with neuroanatomy assessment performance (r = 0.12, < 0.001). Time spent on the CAL course, enjoyment of it, the amount of CAL videos watched and quizzes completed were each significantly positively related to deep approach. The relationship between deep approach and enjoyment was particularly notable (25.5% shared variance). Reported relationships between deep approach and academic performance support the desirability of deep approach in university students. It is proposed that enjoyment of the course and the deep approach could be increased by incorporation of more clinical material which is what the students liked most. Anat Sci Educ 10: 560–569. © 2017 American Association of Anatomists.  相似文献   

15.
Teaching time dedicated to anatomy education has been reduced at many medical schools around the world, including Nova Medical School in Lisbon, Portugal. In order to minimize the effects of this reduction, the authors introduced two optional, semester‐long cadaveric dissection courses for the first two years of the medical school curriculum. These courses were named Regional Anatomy I (RAI) and Regional Anatomy II (RAII). In RAI, students focus on dissecting the thorax, abdomen, pelvis, and perineum. In RAII, the focus shifts to the head, neck, back, and upper and lower limbs. This study prospectively analyzes students' academic achievement and perceptions within the context of these two, newly‐introduced, cadaveric dissection courses. Students' satisfaction was assessed anonymously through a questionnaire that included items regarding students' perception of the usefulness of the courses for undergraduate teaching, as well as with regards to future professional activity. For each of the three academic years studied, the final score (1 to 20) in General Anatomy (GA), RAI, and RAII was on average 14.26 ± 1.89; 16.94 ± 1.02; 17.49 ± 1.01, respectively. The mean results were lower in GA than RAI or RAII (P < 0.001). Furthermore, students who undertook these courses ranked them highly with regards to consolidating their knowledge of anatomy, preparing for other undergraduate courses, and training for future clinical practice. These survey data, combined with data on participating students' academic achievement, lend strong support to the adoption of similar courses as complementary and compulsory disciplines in a modern medical curriculum. Anat Sci Educ 10: 127–136. © 2016 American Association of Anatomists.  相似文献   

16.
The utilization of bedside ultrasound by an increasing number of medical specialties has created the need for more ultrasound exposure and teaching in medical school. Although there is a widespread support for more vertical integration of ultrasound teaching throughout the undergraduate curriculum, little is known about whether the quality of ultrasound teaching differs if performed by anatomists or clinicians. The purpose of this study is to compare medical students' evaluation of ultrasound anatomy teaching by clinicians and anatomists. Hands‐on interactive ultrasound sessions were scheduled as part of the gross anatomy course following principles of adult learning and instructional design. Seven teachers (three anatomists and four clinicians) taught in each session. Before each session, anatomists were trained in ultrasound by clinicians. Students were divided into groups, rotated teachers between sessions, and completed evaluations. Results indicated students perceived the two groups as comparable for all factors except for knowledge organization and the helpfulness of ultrasound for understanding anatomy (P < 0.001). However, results from unpaired samples t‐tests demonstrated a nonstatistically significant difference between the groups within each session for both questions. Moreover, students' test performance for both groups was similar. This study demonstrated that anatomists can teach living anatomy using ultrasound with minimal training as well as clinicians, and encourage the teaching of living anatomy by anatomists in human anatomy courses using ultrasound. Repeating this study at a multicenter level is currently being considered to further validate our conclusion. Anat Sci Educ 7: 340–349. © 2013 American Association of Anatomists.  相似文献   

17.
Students' perceptions of the education environment influence their learning. Ever since the major medical curriculum reform, anatomy education has undergone several changes in terms of its curriculum, teaching modalities, learning resources, and assessment methods. By measuring students' perceptions concerning anatomy education environment, valuable information can be obtained to facilitate improvements in teaching and learning. Hence, it is important to use a valid inventory that specifically measures attributes of the anatomy education environment. In this study, a new 11‐factor, 132‐items Anatomy Education Environment Measurement Inventory (AEEMI) was developed using Delphi technique and was validated in a Malaysian public medical school. The inventory was found to have satisfactory content evidence (scale‐level content validity index [total] = 0.646); good response process evidence (scale‐level face validity index [total] = 0.867); and acceptable to high internal consistency, with the Raykov composite reliability estimates of the six factors are in the range of 0.604–0.876. The best fit model of the AEEMI is achieved with six domains and 25 items (X2 = 415.67, P < 0.001, ChiSq/df = 1.63, RMSEA = 0.045, GFI = 0.905, CFI = 0.937, NFI = 0.854, TLI = 0.926). Hence, AEEMI was proven to have good psychometric properties, and thus could be used to measure the anatomy education environment in Malaysia. A concerted collaboration should be initiated toward developing a valid universal tool that, using the methods outlined in this study, measures the anatomy education environment across different institutions and countries. Anat Sci Educ 10: 423–432. © 2017 American Association of Anatomists.  相似文献   

18.
The Anatomy Learning Experiences Questionnaire (ALEQ) was designed by Smith and Mathias to explore students' perceptions and experiences of learning anatomy. In this study, the psychometric properties of a slightly altered 34‐item ALEQ (ALEQ‐34) were evaluated, and correlations with learning outcomes investigated, by surveying first‐ and second‐year undergraduate medical students; 181 usable responses were obtained (75% response rate). Psychometric analysis demonstrated overall good reliability (Cronbach's alpha of 0.85). Exploratory factor analysis yielded a 27‐item, three‐factor solution (ALEQ‐27, Cronbach's alpha of 0.86), described as: (Factor 1) (Reversed) challenges in learning anatomy, (Factor 2) Applications and importance of anatomy, and (Factor 3) Learning in the dissection laboratory. Second‐year students had somewhat greater challenges and less positive attitudes in learning anatomy than first‐year students. Females reported slightly greater challenges and less confidence in learning anatomy than males. Total scores on summative gross anatomy examination questions correlated with ALEQ‐27, Pearson's r = 0.222 and 0.271, in years 1 and 2, respectively, and with Factor 1, r = 0.479 and 0.317 (all statistically significant). Factor 1 also had similar correlations across different question types (multiple choice; short answer or essay; cadaveric; and anatomical models, bones, or radiological images). In a retrospective analysis, Factor 1 predicted poor end‐of‐semester anatomy examination results in year 1 with a sensitivity of 88% and positive predictive value of 33%. Further development of ALEQ‐27 may enable deeper understanding of students' learning of anatomy, and its ten‐item Factor 1 may be a useful screening tool to identify at‐risk students. Anat Sci Educ 10: 514–527. © 2017 American Association of Anatomists.  相似文献   

19.
Sex differences favoring males in spatial abilities have been known by cognitive psychologists for more than half a century. Spatial abilities have been related to three‐dimensional anatomy knowledge and the performance in technical skills. The issue of sex differences in spatial abilities has not been addressed formally in the medical field. The objective of this study was to test an a priori hypothesis of sex differences in spatial abilities in a group of medical graduates entering their residency programs over a five‐year period. A cohort of 214 medical graduates entering their specialist residency training programs was enrolled in a prospective study. Spatial abilities were measured with a redrawn Vandenberg and Kuse Mental Rotations Tests in two (MRTA) and three (MRTC) dimensions. Sex differences favoring males were identified in 131 (61.2%) female and 83 (38.8%) male medical graduates with the median (Q1, Q3) MRTA score [12 (8, 14) vs. 15 (12, 18), respectively; P < 0.0001] and MRTC score [7 (5, 9) vs. 9 (7, 12), respectively; P < 0.0001]. Sex differences in spatial abilities favoring males were demonstrated in the field of medical education, in a group of medical graduates entering their residency programs in a five‐year experiment. Caution should be exerted in applying our group finding to individuals because a particular female may have higher spatial abilities and a particular male may have lower spatial abilities. Anat Sci Educ 6: 368–375. © 2013 American Association of Anatomists.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号