首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 597 毫秒
1.
Three-dimensional virtual technology (3DVT) educational tools and peer-tutoring have proven to be effective teaching strategies in improving student learning outcomes. The purpose of this study was threefold: (1) compare the anatomy academic performance between underrepresented minority (URM) and non-minority (non-URM) students, (2) compare the voluntary use of 3DVT dissection videos and peer-mentoring between these two cohorts, and (3) estimate the association between the use of these teaching strategies on anatomy examinations and course grades at a school of physical therapy. Three-dimensional virtual technology narrated dissection videos and peer-mentoring were made available to all students. Time accessing the video and attending peer-mentoring sessions was measured throughout the course for all students. Three practical and four written examinations and the final course grade were calculated. Numerous one-way ANOVAs were used to compare examination/course grades between student cohorts (URM and non-URM) and usage of the two educational strategies (3DVT and peer-mentoring). Multiple linear regressions were performed with teaching strategies as predictors and grades as outcomes. Underrepresented minority students demonstrated significantly lower practical examination scores (P = 0.04), lower final course grades (P = 0.01), and a greater use of mentorship hours (P = 0.001) compared to non-URM. The regression models with both predictors (3DVT and peer-mentoring) combined demonstrated the greatest association with grades for both URM and non-URM. For both groups of students, the association between predictors and practical examination scores, although fair, was not statistically significant. Peer-mentoring seems to be the most effective teaching strategy in helping URM students succeed in anatomy.  相似文献   

2.
In early 2020, the Covid-19 crisis forced medical institutions worldwide to convert quickly to online platforms for content delivery. Although many components of medical education were adaptable to that format, anatomical dissection laboratory lost substantial content in that conversion, including features of active student participation, three-dimensional spatial relationships of structures, and the perception of texture, variation, and scale. The present study aimed to develop and assess online anatomy laboratory sessions that sought to preserve benefits of the dissection experience for first-year medical students. The online teaching package was based on a novel form of active videography that emulates eye movement patterns that occur during processes of visual identification, scene analysis, and learning. Using this video-image library of dissected materials, content was presented through asynchronous narrated laboratory demonstrations and synchronous/active video conference sessions and included a novel, video-based assessment tool. Data were obtained using summative assessments and a final course evaluation. Test scores for the online practical examination were significantly improved over those for previous in-person dissection-based examinations, as evidenced by several measures of performance (Mean: 2015–2019: 82.5%; 2020: 94.9%; P = 0.003). Concurrently, didactic test scores were slightly, but not significantly, improved (Mean: 2015–2019: 88.0%; 2020: 89.9%). Student evaluations of online sessions and overall course were highly positive. Results indicated that this innovative online teaching package can provide an effective alternative when in-person dissection laboratory is unavailable. Although this approach consumed considerable faculty time for video editing, further development will include video conference breakout rooms to emulate dissection small-group teamwork.  相似文献   

3.
Progressive curricular changes in medical education over the past two decades have resulted in the diaspora of gross anatomy content into integrated curricula while significantly reducing total contact hours. Despite the development of a wide range of alternative teaching modalities, gross dissection remains a critical component of medical education. The challenge posed to modern anatomists is how to maximize and integrate the time spent dissecting under the current curricular changes. In this study, an alternative approach to the dissection of the pelvis and perineum is presented in an effort to improve content delivery and student satisfaction. The approach involves removal of the perineum en bloc from the cadaver followed by excision of the pubic symphysis, removal and examination of the bladder and associated structures, examination and bisection of the midline pelvic organs in situ, and midsagittal hemisection of the pelvis for identification of the neurovasculature. Results indicate that this novel dissecting approach increases the number of structures identified by 46% ± 14% over current dissecting methods. Survey results indicate that students were better able to integrate lecture and laboratory concepts, understand the concepts, and successfully identify more structures using the new approach (P < 0.05). The concept of anatomic efficiency is introduced and proposed as a standard quantitative measure of gross dissection proficiency across programs and institutions. These findings provide evidence that innovative solutions to anatomy education can be found that help to maintain critical content and student satisfaction in a modern medical curriculum.  相似文献   

4.
The supplementation of lecture-based anatomy teaching with laboratory sessions, involving dissection or anatomical specimens, is commonly used. Hands-on dissection allows students to handle instruments correctly while actively exploring three-dimensional anatomy. However, dissection carries a potential risk of sharps and splash injuries. The aim of this study was to quantify the frequency rate of such cases per 1,000 student-hours of dissection and identify potential factors than might influence safety in anatomy laboratories. Data were retrospectively collected from September 2013 to June 2018 at the University of St Andrews, Scotland, UK. Overall, 35 sharps injuries were recorded in undergraduate medical students, with a frequency rate of 0.384 and no splash cases. A statistically significant, moderate negative association between year of study and frequency rate (rho(25) = −0.663; P < 0.001) was noted. A statistically significant difference in the frequency rate between different semester modules (χ2(4) = 13.577, P = 0.009) was observed with the difference being between Year 1 Semester 2 and Year 3 Semester 1 (P = 0.004). The decreasing trend with advancing year of study might be linked to increasing dissecting experience or the surface area of the region dissected. The following factors might have contributed to increased safety influencing frequency rates: single-handed blade removal systems; mandatory personal protective equipment; and having only one student dissecting at a given time. The authors propose that safety familiarization alongside standardized training and safety measures, as part of an evidence-based culture shift, will instill safety conscious behaviors and reduce injuries in anatomy laboratories.  相似文献   

5.
Dissection videos are commonly utilized in gross anatomy courses; however, the actual usage of such videos, as well as the academic impact of student use of these videos, is largely unknown. Understanding how dissection videos impact learning is important in making curricular decisions. In this study, 22 dissection videos were created to review structures identified in laboratory sessions throughout the Organ Systems 1 (OS1), 2 (OS2), and 3 (OS3) courses. Dissection videos were provided to 201 first-year medical students, and viewing data were recorded. Demographic data for age and gender identity were also collected from students. Overall, there was a significant decrease in total views (P = 0.001), the number of students who pressed play (P < 0.001), and the number of students who viewed ≥ 90% of the total length of videos (P < 0.001) from OS1 to OS3. The total adjusted time spent viewing videos was not significantly different between individual OS courses. There were some instances where significant differences existed in examination performance between those who did and did not view videos, and by time spent viewing videos. There were no significant differences in time spent viewing videos by gender. Together these data suggest that students may utilize dissection videos more at the beginning of a dissection course, although they remain an important resource throughout the year for a subset of students.  相似文献   

6.
Mercer University School of Medicine utilizes a problem-based learning (PBL) curriculum for educating medical students in the basic clinical sciences. In 2014, an adjustment was piloted that enabled PBL cases to align with their corresponding cadaver dissection that reviewed the content of anatomy contained in the PBL cases. Faculty had the option of giving PBL cases in sequence with the cadaveric dissection schedule (sequential group) or maintaining PBL cases out of sequence with dissections (traditional group). During this adjustment, students’ academic performances were compared. Students’ perception of their own preparedness for cadaveric dissection, their perceived utility of the cadaver dissections, and free-response comments were solicited via an online survey. There were no statistically significant differences when comparing student mean examination score values between the sequential and traditional groups on both multidisciplinary examinations (79.39 ± 7.63 vs. 79.88 ± 7.31, P = 0.738) and gross anatomy questions alone (78.15 ± 10.31 vs. 79.98 ± 9.31, P = 0.314). A statistically significant difference was found between the sequential group's and traditional group's (63% vs. 29%; P = 0.005) self-perceived preparedness for cadaveric dissections in the 2017 class. Analysis of free-response comments found that students in the traditional group believed their performance in PBL group, participation in PBL group and examination performance was adversely affected when compared to students with the sequential schedule. This study provides evidence that cadaveric dissections scheduled in sequence with PBL cases can lead to increased student self-confidence with learning anatomy but may not lead to improved examination scores.  相似文献   

7.
Innovative reforms in medical education will require instructional tools to support these changes and to give students more flexibility in where and how they learn. At Colorado State University, the software program Virtual Canine Anatomy (VCA) was developed to assist student learning both inside and outside the anatomical laboratory. The program includes interactive anatomical photographs of dissected canine cadavers, dissection instructions with accompanying videos and diagrams, radiographs, and three-dimensional models. There is a need to evaluate the effectiveness of instructional tools like VCA so that decisions on pedagogical delivery can be evidence-based. To measure the impact of VCA on student outcomes in a dissection laboratory, this study compared student attitudes, quiz scores, dissection quality and accuracy, and instructor reliance between students with and without access to VCA. Students with VCA needed less time with teaching assistants (P < 0.01), asked teaching assistants fewer questions (P = 0.04), felt that the dissection was easier (P = 0.02), and were in stronger agreement that they had access to adequate resources (P = 0.02). No differences were found in the dissection quality or accuracy, quiz scores, or attitudes regarding overall enjoyment of the activity between the two groups. This study shows that VCA increases student independence and can be used to enhance anatomical instruction.  相似文献   

8.
Due to the current trend of decreasing contact hours and less emphasis being given to the basic science courses in the pre-clinical years of medical education, it is essential that new approaches to teaching gross anatomy are investigated to ensure medical students are being adequately exposed to anatomical content. This study retrospectively analyzed practical examination data from four medical gross anatomy classes (N = 569) to ascertain which pedagogical approach, student participation in the dissection process, or interaction with prosected specimens is best for teaching the anatomy of the hand and foot. Data analysis involved the use of propensity score matching, a nonparametric preprocessing statistical approach which ensures accurate representation of the true treatment effect by balancing cohorts prior to statistical analysis. Statistical analysis indicated that those students who were exposed to the anatomy of the hand through interactions with prosected specimens performed 5.6% better (P = 0.012) while for the foot, students who interacted with prosections performed 13.0% better (P < 0.001). Although limited, data from this study suggest that utilizing prosections of the hand and foot seems to be a more advantageous pedagogical approach for teaching these regions than requiring students to dissect them.  相似文献   

9.
Anatomical dissection on cadavers can be a source of anxiety for medical students. Studies in other stressful settings have shown a reduction in anxiety when there is background music. The objective of this study was to determine if music can have an impact on student anxiety, student satisfaction, and student performance in dissection room. This cluster randomized interventional trial included 187 second-year medical students. The intervention was standardized background music, selected based on the literature, with a tempo of between 60 and 80 bpm. Six balanced clusters were randomized (1:1) to music or no music during dissection sessions. The main assessment criterion was a validated self-evaluation scale score for anxiety, the State Trait Anxiety Inventory. Student satisfaction was measured using a visual analog scale and dissection performance was evaluated by an examination. The outcomes were analyzed with mixed models adjusted on group effect, chronic anxiety, and confounding factors. A significant (58%) relative decrease in acute anxiety, odds ratio 0.423 [0.160; 0.710] was found for the music intervention group. Music also had a positive impact on performance with students in the intervention group attaining higher grades than those in the control group (0.42/10 higher, P = 0.0016). The study also showed a nonsignificant increase in satisfaction with 0.37 extra points (P = 0.137) in the intervention group. Background music had a significant impact on anxiety in the dissection room and on technical and theoretical performance in the subsequent anatomy examination. This music intervention could be extended to other stressful work environments.  相似文献   

10.
Gross anatomy dissection in contemporary medical education must balance the traditional value of learning from the cadaver with the possibilities created by the use of digital tools as supplemental resources that personalize and deepen the student learning experience. This study broadly examined the design, implementation, and use of AnatomyShare, a novel iPad application employing learner-generated content that allows students to securely share annotated images of their dissections with each other and take faculty-generated image-based quizzes during their first-year medical school gross anatomy course. Almost all students enrolled in the course used the application (N = 176; 91% use based on analytics). Seventy-five students responded to a survey asking how and when they used the application, along with their perceptions of its usefulness and contribution to learning. More students reported using the application outside of laboratory (97.3%) than during laboratory (85.3%), despite only in-laboratory use being required. Taking quizzes using the “Exam” feature was the highest rated use of AnatomyShare, and students cited that the application exposed them to anatomical variation and motivated them to correctly identify structures during dissection. While steps need to be taken to combat low-quality learner-generated content and to enhance meaningful student interaction and collaboration, AnatomyShare was a feasible and highly rated supplement to dissection that provided valuable assessment opportunities for students. Future research will examine the impact of use on course grades and engagement in gross anatomy dissection.  相似文献   

11.
The gross anatomy dissection course is considered to be one of the most important subjects in medical school. Advancing technology facilitates the production of e-learning material that can improve the learning of topographic anatomy during the course. The purpose of this study was to examine a locally produced audiovisual dissection manual's effects on performance in dissection, formal knowledge gained, motivation, emotions, learning behavior, and learning efficiency of the medical students. The results, combined with the total effort put into the production of the manual, should support decisions on further implementation of this kind of audiovisual e-learning resource into the university's curriculum. First-year medical students (n = 279) were randomly divided into three groups for two weeks within the regular dissection course hours during the dissection of the anterior and posterior triangles of the neck. Two groups received an audiovisual dissection manual (n = 96) or an improved written manual (n = 94) as an intervention, the control group (n = 89) received the standard dissection manual. After dissection, each student filled out tests and surveys and their dissections were evaluated. The audiovisual dissection manual did not have any significant positive effects on the examined parameters. The effects of the audiovisual dissection manual on the medical students' learning experience, as observed in this study, did not support further curriculum implementation of this kind of e-learning resource. This study can serve as an orientation for further evaluation and design of e-learning resources for the gross anatomy dissection course.  相似文献   

12.
After a considerable amount of research and experimentation, cat dissection was replaced with rat dissection and clay modeling in the human anatomy and physiology laboratory curricula at La Guardia Community College (LAGCC), a large urban community college of the City University of New York (CUNY). This article describes the challenges faculty overcame and the techniques used to solve them. Methods involved were: developing a laboratory manual in conjunction with the publisher, holding training sessions for faculty and staff, the development of instructional outlines for students and lesson plans for faculty, the installation of storage facilities to hold mannequins instead of cat specimens, and designing mannequin clean‐up techniques that could be used by more than one thousand students each semester. The effectiveness of these curricular changes was assessed by examining student muscle practical examination grades and the responses of faculty and students to questionnaires. The results demonstrated that the majority of faculty felt prepared to teach using clay modeling and believed the activity was effective in presenting lesson content. Students undertaking clay modeling had significantly higher muscle practical examination grades than students undertaking cat dissection, and the majority of students believed that clay modeling was an effective technique to learn human skeletal, respiratory, and cardiovascular anatomy, which included the names and locations of blood vessels. Furthermore, the majority of students felt that rat dissection helped them learn nervous, digestive, urinary, and reproductive system anatomy. Faculty experience at LAGCC may serve as a resource to other academic institutions developing new curricula for large, on‐going courses. Anat Sci Educ. 7: 38–46. © 2013 American Association of Anatomists.  相似文献   

13.
Few realized the extent of disruption that the Covid-19 global pandemic would impose upon higher anatomical education. While many institutions were obliged to adopt a fully-remote online model, the New York Institute of Technology College of Osteopathic Medicine strove to develop a curriculum that would allow medical students to receive an in-person anatomy education. A hybrid model that emphasized learning from prosected cadavers and self-study stations was implemented, with the remainder of the students' time directed toward studying at home. Through an anonymous survey aimed at gleaning student satisfaction, this study demonstrates that this hybrid prosection-based anatomy course aligned with student preferences both assuming no health risk (64.6% agreed) and given the current risk of contracting Covid-19 (78.5% agreed). Generally, students felt that their education was equal to that of previous years (Likert scale = 3.24 ± 1.05), fostered an appreciation for anatomy (4.56 ± 0.59), promoted teamwork (4.13 ± 0.85), and prepared them for practical examinations (4.18 ± 0.74). Linear mixed-effect models demonstrated that specific differences in results could be attributed to students' preconceived preferences toward student-led dissections and to past medical training. Importantly, most students “disagree” (1.97 ± 1.00) that they were concerned about the risk of exposure to Covid-19 during in-person anatomy laboratory sessions. Areas requiring improvement were identified by the model, including the provision of access to the cadavers outside of the regularly scheduled laboratory times (3.89 ± 1.08). These findings should be utilized when designing future gross anatomy courses in response to the “new normal”.  相似文献   

14.
Many institutions rely upon prosection-based laboratories as more resource-efficient and time-effective alternatives to traditional cadaver dissection for human anatomy education. To facilitate growing enrollment numbers despite resource limitations, the University of Guelph (a non-medical institution) introduced a modified “stepwise” prosection-based laboratory cohort to supplement a dissection-based course. In this design, all students attended the same lectures, but those in the dissection-based cohort learned by performing regional dissections and students in the prosection-based cohort studied from those dissections. Prosection students thereby witnessed a “slow reveal” of structures throughout the course. This study compared the perceived course experiences, student approaches to learning, and academic performance between the two groups. Multiple linear regression analyses were used to isolate the effect of the laboratory environment on student approaches to learning and academic performance from demographic and situational covariates. Both groups reported positive course experience ratings and high average final grades that were not statistically dissimilar (P > 0.05), increased reliance on deep approaches to learning (P = 0.002), and decreased reliance on surface approaches to learning (P = 0.023). When controlling for covariates, participation in dissection had small but statistically significant positive associations with deep approaches to learning (P = 0.043), performance on laboratory oral assessments (P < 0.001), and average final grades (P = 0.039). Ultimately, both designs promoted meaningful learning and desirable performance outcomes, indicating that both dissection and stepwise prosection have the potential to facilitate high quality human anatomy instruction.  相似文献   

15.
Many medical schools have undergone curricular reform recently. With these reforms, time spent teaching anatomy has been reduced, and there has been a general shift to a pass/fail grading system. At Indiana University School of Medicine (IUSM), a new curriculum was implemented in fall 2016. The year-long human gross anatomy course taught in 2015 was condensed into an integrated, semester-long course starting in 2016. Additionally, the grading scale shifted to pass/fail. This study examined first-year medical student performance on anatomy practical laboratory examinations—specifically, among lower-order (pure identification) questions and higher-order (function, innervation) questions. Participants included medical students from a pre-curricular reform cohort (year 2015, 34 students) and two post-curricular reform cohorts (years 2016, 30 students and 2017, 33 students). A Kruskal–Wallis ANOVA test was used to determine differences of these questions among the three cohorts. Additionally, 40 of the same lower-order questions that were asked on gross anatomy laboratory examinations from medical student cohort year 2015 and year 2016 were further analyzed using an independent samples t-test. Results demonstrated that the pre-curricular reform cohort scored significantly higher on both lower-order (median = 81, p < 0.001) and higher-order questions (median = 82.5, p < 0.05) than both post-curricular reform cohorts. Additionally, when reviewing the selected 40 similar questions, it was found that the pre-curricular reform cohort averaged significantly higher (82.1 ± 16.1) than the post-curricular reform cohort from 2016 (69.3 ± 21.8, p = 0.004). This study provides evidence about the impact of curricular reform on medical student anatomical knowledge.  相似文献   

16.
Due to the Covid-19 pandemic, National Taiwan University anatomy teachers adopted asynchronous online video teaching and reduced the size of anatomy laboratory groups in April 2020. The aim of this study was to investigate the impact of these changes on medical students’ learning. Before Covid-19, the performance of the 2019–2020 cohort was significantly better than that of the 2018–2019 cohort. However, the implementation of modified teaching strategies significantly lowered the laboratory midterm score of the 2019–2020 cohort in the second semester. Conversely, the final laboratory examination score of the 2019–2020 cohort was significantly higher than that of the 2018–2019 cohort. Through correlation analysis, lecture and laboratory examination scores were highly correlated. Additionally, the difference in lecture and laboratory z-scores between two cohorts, the Likert scale survey and free-text feedback of the 2019–2020 cohort, were conducted to show the impact of modified teaching strategies. There were several important findings in this study. First, the change in teaching strategies may temporarily negatively influence medical students to learn anatomy. Besides, analyzing the performance of laboratory assessments could be a complementary strategy to evaluate online assessments. Applying lecture examination scores to predict laboratory performance was a feasible way to identify students who may have difficulty in learning practical dissection. Finally, reducing group size together with reduced peer discussion may have a negative effect on learning cadaver dissection for students with low academic performance. These findings should be taken into consideration when anatomy teachers apply new teaching strategies in anatomy courses.  相似文献   

17.
Radiological images show anatomical structures in multiple planes and may be effective for teaching anatomical spatial relationships, something that students often find difficult to master. This study tests the hypotheses that (1) the use of cadaveric computed tomography (CT) scans in the anatomy laboratory is positively associated with performance in the gross anatomy course and (2) dissection of the CT‐scanned cadaver is positively associated with performance on this course. One hundred and seventy‐nine first‐year medical students enrolled in gross anatomy at Boston University School of Medicine were provided with CT scans of four cadavers, and students were given the opportunity to choose whether or not to use these images. The hypotheses were tested using logistic regression analysis adjusting for student demographic characteristics. Students who used the CT scans were more likely to score greater than 90% as an average practical examination score (odds ratio OR 3.6; 95% CI 1.4, 9.2), final course grade (OR 2.6; 95% CI 1.01, 6.8), and on spatial anatomy examination questions (OR 2.4; 95% CI 1.03, 5.6) than were students who did not use the CT scans. There were no differences in performance between students who dissected the scanned cadavers and those who dissected a different cadaver. These results demonstrate that the use of CT scans in medical gross anatomy is predictive of performance in the course and on questions requiring knowledge of anatomical spatial relationships, but it is not necessary to scan the actual cadaver dissected by each student. Anat Sci Educ 3: 56–63, 2010. © 2010 American Association of Anatomists.  相似文献   

18.
19.
Reciprocal peer teaching (RPT), wherein students alternate roles as teacher and learner, has been applied in several educational arenas with varying success. Here, we describe the implementation of a reciprocal peer teaching protocol in a human gross anatomy laboratory curriculum. We compared the outcomes of the RPT class with those of previous classes in which RPT was not employed. Objective data (i.e., course grades) show no significant differences in gross anatomy laboratory grades between students in the RPT and non‐RPT classes. To subjectively evaluate the relative success of RPT in the laboratory, we analyzed student opinions obtained through anonymous surveys. These data show that a powerful majority of student respondents felt that RPT was beneficial and should be used in future classes. The greatest disadvantage was unreliable quality of teaching from peers; however, most students still felt that RPT should be continued. Students who felt that they had insufficient hands‐on experience (by virtue of dissecting only half the time) were significantly more likely to recommend abandoning RPT. These results underscore the importance of active student dissection, and suggest that a modified version of the described RPT protocol may satisfy more of the needs of large, diverse student populations. Several hidden benefits of RPT exist for faculty, administration, and students, including reduced need for large numbers of cadavers, attendant reduction in operating costs, and smaller student‐to‐teacher ratios. Anat Sci Educ 2:143–149, 2009. © 2009 American Association of Anatomists.  相似文献   

20.
Checklists have been widely used in the aviation industry ever since aircraft operations became more complex than any single pilot could reasonably remember. More recently, checklists have found their way into medicine, where cognitive function can be compromised by stress and fatigue. The use of checklists in medical education has rarely been reported, especially in the basic sciences. We explored whether the use of a checklist in the gross anatomy laboratory would improve learning outcomes, dissection quality, and students' satisfaction in the first-year Human Structure didactic block at Mayo Medical School. During the second half of a seven-week anatomy course, dissection teams were each day given a hardcopy checklist of the structures to be identified during that day's dissection. The first half of the course was considered the control, as students did not receive any checklists to utilize during dissection. The measured outcomes were scored on four practice practical examinations and four dissection quality assessments, two each from the first half (control) and second half of the course. A student satisfaction survey was distributed at the end of the course. Examination and dissection scores were analyzed for correlations between practice practical examination score and checklist use. Our data suggest that a daily hardcopy list of anatomical structures for active use in the gross anatomy laboratory increases practice practical examination scores and dissection quality. Students recommend the use of these checklists in future anatomy courses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号