首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
错在哪里?     
一、广西东兰中学宋全宁来稿题:设方程x~2-2mx+m+2=0有两个实根,且分别为某直角三角形两锐角正弦的四倍,求m的值。解设直角三角形两锐角分别认α、β,则方程之二根为4sinα和4sinβ=4sin(90°-α)=4cosα,分别代入方程,得 16sin~2α-8msinα+m+2=0和16cosα~2-8mcosα+m+2=0 ∴m=(16sin~2α+2)/(8sinα-1)和m=(16cos~2α+2)/(8cosα-1) 即(16sin~2α+2)/(8sinα-1)=(16cos~2α+2)/(8cosα-1)解得锐角α=45°  相似文献   

2.
容易证明下列三角恒等式: sin~2α sin~2β=sin~2(α β)-2sinαsinβcos(α β) 这个三角恒等式结构对称,易于记忆,直接利用这一公式可简单求解一类高考题和竞赛题。  相似文献   

3.
在平面三角中有与代数中的平方差公式a~2-b~2=(a+b)(a-b)形似的恒等式: sin~2α-sin~2β=cos~2β-cos~2α=sin(α+β)·sin(α-β),(1)与 cos~2α-sin~2β=cos~2β-sin~2α=cos(α+β)·cos(α-β)。(2) 这两组恒等式不妨叫做三角中的“平方差”公式。熟记这两组恒等式对于解答某些三角问题、几何问题或综合题会有所帮助。恒等式(1)证明如下: ∵sin~2α-sin~2β=1/2(1-cos2α)-1/2(1-cos2β)=1/2(cos2β-cos2α)=sin(α+β)sin(α-β),  相似文献   

4.
构造法是数学中常用的也是重要的方法之一.本文将通过构造辅助方程求某些三角函数式的值,而这些三角函数的值都是不易直接求解的。例1 求sin18°的值. 解:设α=18°,那么3α=90°-2α,从而sin3α=cos2α,即 3sinα-4sin~3α=1-2sin~2α, 4sin~3α-2sin~2α-3sinα 1=O.这说明sin18°是方程4x~3-2x~2-3x 1=0的一个根. ∵ 4x~3-2x~2-3x 1=(x-1)(4x~2 2x -1). ∴原方程的根为1,(-1±5~(1/5))/4,于是sin18°=(-1 5~(1/5))/4. 例2 求 cosπ/7-cos2π/7 co3π/7的值。解:设α=π/7,并设原式为y,那么y=cosα cos3α cos5α,从而  相似文献   

5.
“数学教学通讯”85年第5期张山同志的文“一个公式的巧用”读后很受启发,公式(a b c)(a~2 b~2 c~2-ab-bc-ca)=a~3 b~3 c~3-3abc在解题中巧用之处不少。今就这个公式在三角恒等式的证明中巧用的一角补充几个例题,使该文更有说服力。例1.已知sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin~3α sin~3β sin~3γ=3sinαsinβsinγ (2)cos~3α cos~3β cos~3γ=3cosαcosβcosγ证明:当a b c=0时,a~3 b~3 c~3=3abc令α=siaα,b=sinβ,c=sinγ,则sin~3α sin~3β sin~3γ=3sinαsinβsinγ。令a=cosα,b=cosβ,c=cosγ,则cos~3α cos~3β cos~3γ=3cosαcosβcosγ。利用例1的结论又得一题: 例2.已知:sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin3α sin3β sin3γ  相似文献   

6.
一些三角问题转化为代数问题,运用韦达定理逆定理构造方程来解有时是很简便的。兹举例说明之。 [例1] 已知sinα·cosα=-(3~(1/2))/4,且(π/2)<α<3π/4,求sinα和cosα的值。解:∵(sinα+cosα)~2=sin~2α+cos~2α+2sinα cosα=1-(3~(1/2))/2,(又(π/2)<α<(3π/4)), ∴sinα+cosα>0。  相似文献   

7.
103.α,β,τ为锐角且 cos~2α cos~2β cos~2τ=1,试证:(3)/(4)π<α β τ<π.证由条件可得:cos~2α=sin~2β-cos~2τ>0及 cos~2α=sin~2τ-cos~2β>0.因而又有:sinβ>cosτ及 sinτ>cosβ.于是:sinβ·sinτ>cosτ·cosβ,即 cos(β τ)<0,得:β τ>(π)/(2)·同法可证得:α β>(π)/(2)及τ α>(π)/(2),因而得:α β τ>(3)/(4)π·  相似文献   

8.
<正> 形如ab=cd+ef的几何问题,其思路不易展开,用“三角法”也有一串冗长的演算。今介绍一个三角恒等式用来证明这类几何问题,它可以省去添加辅助线和冗长计算的麻烦。 三角恒等式。 若α+β+γδ=π, 则sin(α+β)·sin(β+γ)=sinα·sinγ+sinβ·sinγ……(1) 证明:α+λ=π-(β+δ)、∴cos(α+γ)=-cos(β+δ)  相似文献   

9.
三角公式中有的涉及根式前双重符号的取舍,如何取舍正负号,学生往往感到困难。下面举一个例题来说明正负号取舍的方法。例题:用sinα来表示sinα/2和cosα/2 解:∵ sin~2α/2+cos~2α/2=1 (1) 2sinα/2cosα/2=sinα (2) 由(1)+(2)得 (sinα/2+cosα/2)~2=1+sinα sinα/2+cosα/2=±(1+sinα)~(1/2) (3)(1)-(2)得  相似文献   

10.
高中实验修订课本数学第一册(下)的 4.7部分有这样两个三角恒等式: sinα+sinβ=2sinα+β2cosα-β2; cosα+cosβ=2cosα+β2cosα-β2. 这两个三角恒等式通常叫做和差化积公 式,有了它们,我们可容易推出: 定理:(1)sinα+sinβ2≤sinα+β2 (当且仅当α=β时等号成立); (2)cosα+cosβ2≤cosα+β2 (当且仅当α=β时等号…  相似文献   

11.
本文举例介绍利用一些熟知的涉及三角形三内角的三角恒等式去解决一类三角函数式求值的问题。例1.求cos~220° cos~240°-cos20°cos40°之值。解在恒等式cos~2A cos~2B cos~2C 2cosAcosBcosC=1中,令A=20°,B=40°,C=120°,有cos~220° cos~240° (1/4)-cos20°cos40°=1,于是cos~220° cos~240°-cos20°cos40°=(3/4)。例2.求sin~220° sin~240°=sin20°sin40°之值。  相似文献   

12.
在三角中,三角函数连乘积的证明、化简是一个难点。例如,“求证sin20°·sin40°·sin60°·sin80°=3/(16)”,一般需几次应用积化和差公式才能证得。仔细观察求证式,左端除了60°这个特殊角以外,其余三个角为20°、40°、80°,有一定的规律。由此我想起一个三角恒等式: sinα·sin(60°-α)·sin(60° α) =1/4sin3α(1) 如果在上题中令α=20°,则40°=60°-α,80°=60° α,利用(1)式来解决就简单了。证:左=(3~(1/2))/2sin20°sin(60°-20°) ·sin(60° 20°) =(3~(1/2))/2·(1/4)sin60°=3/(16)=右。仿照(1)式,我们还可以证明  相似文献   

13.
考察下列恒等式: cos2θ=2cos~2θ-1; cos2θ=-(2sin~2θ-1) cos3θ=4 cos~3θ-3cosθ; sin3θ=-(4sin~3θ-3sinθ) cos4θ=8 cos~4θ-8cos~2θ+1; cos4θ=8sin~4θ-8sin~2θ+1 cos5θ=16cos~5θ-20cos~3θ+5cosθ;sin5θ=16sin~5θ-20sin~3θ+5sinθ, ………………………………我们或许会猜测;是否存在某个定理,可以揭示上列展开式之间的微妙关系呢? 回答是肯定的。本文将提出并证明这个定理。定理若已知casnθ=F(cosθ))  相似文献   

14.
一、三角对偶式例1。化简cos~2α cos~2β-2cosαcosβcos(α β). 设原式为A,设B=sin~2α sin~2β 2sinαsinβcos(α β),则A B=2-2cos~2(α β)=2sin(α β),A-B=cos2α cos2β-2cos(α β)·cos(α-β)=0,故A=B=2sin~2(α β). 类似计算cos~2A cos~2B cos~2C 2cosAcosBcosC(A B C=π),Cos~2θ cos~2(θ 120°) cos~2(θ-120°)等.  相似文献   

15.
题目 1.求cos~210° cos~250°-sin40°·sin80°的值。(1991全国高中联赛) 2.求sin~220° cos~280° 3~(1/2)sin20°·cos80°的值。(1992全国高考题) 3.求sin~220° cos~250° sin20°·cos50°的值。(1995全国高考题) 4.求sin~222° sin~223° 2~(1/2)sin22°·sin23°的值。(自拟题)  相似文献   

16.
涉及三等分角线的又一定理   总被引:1,自引:0,他引:1  
莫勒定理是涉及三等分角线的著名定理,类比三角形的内心与旁心,可得到一个令人吃惊而又全然意外的结论: 定理如图,设AE和AF,BD和BF,CD和CE分别是∠A,∠QBC,∠PCB的三等分线,则△DEF是正三角形,且其边长为8RsinA/3sin(60°-B/3)sin(60°-C/3),其中R为△ABC的外接圆半径。证明:需引入下列两个三角恒等式: (1)sinθ =4sinθ/3sin(60°-θ/3)sin(60°+θ/3). (2)sin~2α+sin~2β十2sinαsinβcos(α+β) =sin~2(α+β). 在△BCD中,由正弦定理得  相似文献   

17.
同角三角函数关系式“sin~2α cos~2α=1”在三角恒等变形中具有广泛的应用.本文作一介绍,供大家参考.一、正用例1已知tanα=m≠0,求sinα.解:由sin~2α cos~2α=1,sinα/cosα=tanα,可得tan~2α=sin~2α/cos~2α=1-cos~2α/cos~2α= 1/cos~2α-1,所以cos~2α=1/1 m~2,可得cosα=±1/(?)~(1/2).又m≠0,知α终边  相似文献   

18.
通过对三角问题结构的分析,合理引入参数,借助参数架起已知通向未知的桥梁,这样往往可以使问题得以方便简捷地解决,请看下面的例子. 一、整体设参 例 1 已知 3sinα+cosα=2,求(sinα-cosα+1)/(sinα+cosα+1)的值.解:设(sinα-cosα+1)/(sinα+cosα+1)=k,则(1-k)sinα-(1-k)cosα=k-1,与3sinα+cosα=2联立,可求得sinα=(3k+1)/(2k+4),cosα=(5-5k)/(2k+4)(k≠-2).  相似文献   

19.
在三角函数中,我们经常会遇到如下一类型的题:例1已知sin(α 45°)=3/5,45°<α<135°求sinα.大部分学生会如下的解答思路:由两角的正弦公式有:sin(α 45°)=sinαcos45° cosαsin45°3/5.即2~(1/2)sinα 2~(1/2)cosα=3/5,①又sin~2α cos~2α=1.②联立①②解方程可求解.且45°<α<135°,所以sinα>0,cosα<0,进一步可确定sivα的取值.此种解法,需要解方程,其中的运算过程稍显繁琐.若仔细分析已知条件,可以将α化为(α 45°)-45°.45°为特殊角,其正弦值与余弦值均已知;又由α的取值范围可求α 45°的取值范围,整体运用α 45°的三角函数值,从  相似文献   

20.
三角中的降幂公式:sin~2α=(1-cos2α)/2,cos~2α=(1 cos2α)/2由倍角公式变形而得,其应用十分广泛.例1.化简cos~2(120° A) cos~2(240° A) cos~2A.解:原式=(1/2)[1 cos(240° 2A)] (1/2)[1 cos(480° 2A)] (1/2)[1 cos2A]=3/2例2.求sin~4 22.5° sin~4 67.5° sin~4 112.5° sin~4 157.5°的值.解:原式=(sin~2 45°/2)~2 (sin~2 135°/2) (sin~2 225°/2)~2 (sin~2 315°/2)~2  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号