首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
性质椭圆x2/a2+y2/b2=1(a>b>0)上任意一点P与过中心的弦AB的两端点A,B连线PA,pb与对称轴不平行,则直线PA,PB的斜率之积为定值.证明如图1,设P(x,y),A(x2,y1),则B(-x1,-y1).所以x2/a2+y2/b2=1①所以x12/a2+y12/b2=1②  相似文献   

2.
张乃贵 《中学教研》2004,(10):10-12
性质椭圆上任意一点P与过中心的弦AB的两端点A、B连线PA、PB与对称轴不平行,则直线PA,PB的斜率之积为定值.证明如图1,设P(x,y),A(x1,y1),则B(-x1,-y1),①-②得  相似文献   

3.
结论 从圆O外一点P引圆的两条切线 PA、PB,切点分别为A、B,则切点弦AB被直线 OP垂直平分. 此结论可推广到椭圆、双曲线和抛物线. 1.从不在椭圆(x2)/(a2) (y2)/(b2)=1(a>b>0)对称轴 上的任意一点P引椭圆的两条切线PA、PB,切 点分别为A、B,则切点弦AB被直线OP平分,且 直线AB和OP的斜率之积为定值-(b2)/(a2).  相似文献   

4.
性质1椭圆x2/a2+y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是椭圆上的点,直线OM与ON的斜率之积为-b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2+y2/(1+λ)b21的椭圆;双曲线x2/a2-y2/b2=1,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是双曲线上的点,直线OM与ON的斜率之积为b2/a2,则动点P的轨迹是方程为x2/(1+λ2)a2-y2/(1+λ)b2=1的双曲线;圆x2+y2=r2,动点P满足:(→OP)=(→OM)+λ(→ON),其中M,N是圆上的点,直线OM与ON的斜率之积为-1,则动点P的轨迹是方程为x2 +y2=(1+λ2)r2的圆.  相似文献   

5.
文[1]论述了圆锥曲线的动弦的两端与曲线上定点连线的斜率之积为定值时动弦过定点的性质,本文将探讨斜率之和为定值时动弦过定点与有定向的性质.定理1椭圆b2x2+a2y2=a2b2上定点P(x0,y0)与椭圆上两点A、A'连线的斜率存在,则:(i)动弦AA’所在直线必过定点M(x0+a/bk·y0,b/ak·x0-y0为)(k≠0)的充要条件是PA、PA’的斜率之和为为定值-2k·b/a;(ii)动弦AA'必有定向(kAA'=b2/a2·x0/y0)的充要条件是PA、PA'的斜率之和为0.比较(l)、(2)两式可知:直线AA’过定点(定值)所以动弦AA’有定向.推论(i)满足定…  相似文献   

6.
命题1过椭圆xa22 yb22=1上点P(异于长轴端点)作倾斜角互补的两条直线,分别与椭圆交于A、B两点(异于P).求证直线AB的斜率为定值.证明:设P(x0,y0),A(x1,y1),B(x2,y2).直线PA的斜率为k,则直线PB的斜率为-k.由y=k(x-x0) y0b2x2 a2y2=a2b2消去y得(b2 a2k2)x2 2k(y0-kx0)a2x a2(y0-kx  相似文献   

7.
结论1:在椭圆x2/a2 y2/b2=1(a>b>0)上不与坐标轴平行的弦的斜率与该弦中点和坐标原点连线的斜率之积为定值-b2/a2(注:若椭圆焦点在y轴上时,即b>a>0,则定值为-a2/b2).证明:设原点为O,A(x1,y1),B(x2,y2)是椭圆上的任意不同的两点,  相似文献   

8.
1.定义:如果一条直线l交圆锥曲线C于A、B两点,则称直线l为圆锥曲线C的割线. 2.公式:设A(x1,y1)、B(x2,y2)、AB的中点N(x0,y0). 椭圆:x2/a2+y2/b2=1的割线AB,则kAB=-b2x0/a2y0. 双曲线:x2/a2-y2/b2=1的割线AB,则KAB=  相似文献   

9.
受文献[1]的启发,本文给出圆锥曲线(椭圆、双曲线、抛物线)垂直于焦点所在对称轴的直线(简称“垂轴线”)的一个性质,并应用性质证明两组“姊妹”结论. 1 一组性质 性质1 已知椭圆Γ:x2/a2+y2/b2=1(a>b>0)与x轴交于A、B两点,直线l:x=m(| m |≠a)是垂直于x轴的一条定直线,P是椭圆Γ上异于A、B的任意一点,若直线PA交直线l于点M(m,y1),直线PB交直线l于点N(m,y2),则y1y2为定值b2/a2(a2-m2).  相似文献   

10.
定义1过椭圆中心的弦称为椭圆的直径.引例若动点P(x,y)与两定点A(-a,0),B(a,0)连线的斜率之积为定值-ab22(a>b>0),求动点P的轨迹方程.图1解如图1,直线PA,PB的斜率分别为kPA=yx a,kPB=yx-a(x≠±a),由已知kPA·kPB=-ab22,得x y a·x-y a=-ab22,化简得动点P的轨迹方程为xa22 yb22  相似文献   

11.
在许多高三数学复习资料中有这样一道题:"已知椭圆(x2)/(4) (y2)/(9)=1上有一点P(1,(3(√3))/2),A,B是椭圆上异于点P的另外两点,若直线PA,PB的倾斜角互补,求证直线AB的斜率为定值."通过对这个问题的研究,笔者得到了一些与定向弦(如果点A,B在一条二次曲线上,那么我们就把AB称为这条二次曲线的一条弦.如果直线AB的斜率为定值,我们则称AB是这条二次曲线的定向弦)相关的有趣性质.  相似文献   

12.
题目:已知椭圆x92 y42=1上总有关于直线l:y=x m对称的两点,试求m的取值范围.一、运用二次方程的判别式求参数的取值范围解法1:设A(x1,y1)、B(x2,y2)是椭圆上关于直线l对称的两点,线段AB的中点为C(x0,y0).因为AB⊥l,所以直线AB的斜率为-1,于是再设直线AB的方程:y=-x b.由于A、B点既在椭圆上,又在垂直于l的直线AB上,点C既在直线AB:y0=-x0 b上,又在直线l:y0=x0 m上,从而联立:x29 y42=1y=-x b,消去y得:13x2-18bx 9b2-36=0,依韦达定理和中点坐标公式得:2x0=x1 x2=1183b,∴x0=193b.从而y0=-x0 b=143b.于是有413b=193b m,得m=-153b,而由于A…  相似文献   

13.
若点A(x0,y0)是椭圆a2-x2+b2-y2=1(a〉b〉0)上的一点,则a2-x0^2+b2-y0^2=1,此式可变形为a2b2-b2x02+a2y02=1。  相似文献   

14.
本文试图通过解几中常见的几类问题分门别类地阐述“三剑客”(斜率公式、中点坐标、根与系数关系)出没于江湖的着陆点,以及三者联袂表演的结合点,希望读者能够体会到他们的“英雄本色”.一、与中点弦及弦的中点有关的问题【例1】过点A(2,1)的直线与双曲线x2-y22=1交于P1,P2两点,求弦P1P2中点P的轨迹方程.分析1:设P1(x1,y1),P2(x2,y2),P1P2弦的中点P(x0,y0),则x21-y212=1x22-y222=1,作差得y1-y2x1-x2=2×x1+x2y1+y2=2×x0y0(中点坐标公式),而AP的斜率kAP=y0-1x0-2=kP1P2=y1-y2x1-x2,∴y0-1x0-2=2×x0y0,化简得:2x20-4x0=y20-y0,所以P…  相似文献   

15.
新教材明确指出 :将圆按照某个方向均匀压缩 (拉长 )可以得到椭圆因此椭圆与圆之间 ,可以通过伸缩变换转化 .三角函数图象变换中的周期变换和振幅变换实际上就是图象沿x轴和y轴方向上的伸缩变换 .由于我们对圆的性质相对于椭圆来说要熟悉得多 ,因此解决椭圆问题时 ,有时可化为圆来解决 ,只要利用伸缩变换即可 .例 1 求椭圆 x2a2 +y2b2 =1的斜率为k的一组平行弦中点的轨迹方程 .解 作变换 x′ =bax ,y′=y ,则椭圆化成圆x′2 +y′2 =b2 ,平行弦方程y=kx +m化成y′=abkx′ +m .易得在圆内平行弦中点的轨迹是垂直于弦且过圆心的直线y′=-bakx…  相似文献   

16.
已知ABC的3个顶点都在⊙O上,且A,B两点关于圆心O对称.设直线AC的斜率为k1,直线BC的斜率为k2,则有k1k2=-1.通过类比的分析,易证对椭圆、双曲线亦有类似的结论.命题已知ABC的3个顶点都在椭圆x2m+yn2=1上,且A,B两点关于原点O对称,设直线AC的斜率为k1,直线BC的斜率为k2,则k1·k2=-mn.证明设A(x1,y1),则B(-x1,-y1),又设C(x2,y2),则由点A、C在椭圆上得x12m+yn21=1,①x22m+yn22=1.②②-①,得(x2-x1)m(x1+x2)+(y2-y1)n(y1+y2)=0.∴yx22++yx11·xy22--xy11=-mn.又k1=xy22--yx11,k2=xy22++xy11,∴k1·k2=-mn.例设M是椭圆C:1x22+y42=1上的…  相似文献   

17.
高中数学精编(解析几何)第87页38题如下:设曲线c_2与曲线c_1:y~2=ax关于点(1,1)对称,且A、B是它们的两个交点,若直线AB的斜率为1,求a。解:c_l:y_2=ax…(1),由对称性得c_2:(2-y)~2=a(2-x)…(2)。(1)-(2)得公共弦AB所在的直线方程:y=a/2x-a/2+1。又∵直线AB的斜率为1,∴a/2=1,即a=2。上述解法主要应用了两条性质:  相似文献   

18.
命题:若直线y=kx+m与双曲线x2/a2-y2/b2=1相交于A,B两点,M(x0,y0)为AB的中点,则b2x0-ka2y0=0. 证明:设A(x1,y1),B(x2,y2), 则x1+x2=2x0,y1+y2=2y0,y2-y1/x2-x1=k 由于A、B两点在双曲线上得: x12/a2-y12/b2=1 ①,x22/a2-y22/b2=1②  相似文献   

19.
笔者近日在学习和研究圆锥曲线时,发现圆锥曲线与其切线有关的一个优美的性质,现表述如下,以期与同仁分享. 性质1 已知A,B是椭圆C:x2/a2+y2/b2=1(a>b>0)上不同的两点(不同时在坐标轴上,或kOA·kOB≠-b2/a2),O为椭圆C的中心,椭圆C在点A,B处的切线分别与直线OB,OA相交于P,Q两点.则AB∥PQ. 证明:如图1,设A(x1,y1),B(x2,y2).则切线AP,BQ的方程分别为:x1x/a2+y1y/b2=1,x2x/a2+y2y/b2=1.直线OA,OB的方程分别为:y=y1/x1x,y=y2/x2x由方程组{x2x/a2+y2y/b2=1 y=y1/x1x,解得点Q的坐标为xQ=a2+b2+x1/b2x1x2+a2y1y2,yQ=a2+b2+y1/b2x1x2+a2y1y2.  相似文献   

20.
大家都知道,圆具有如下性质:“如果AB是圆O的任意一条弦,M为AB的中点,那么AB上 OM,用‘斜率’的语言来叙述,即k_(AB·k_(OM)=-1.”其实,一般有心二次曲线均有类似的性质,用命题分述如下: 命题1:如果AB是椭圆x2/a2+y2/b2=1的任意一条弦,O为椭圆的中心,e为椭圆的离心率,M为AB的中点,即k_(AB)·k_(OM)=e2-1. 命题2:如果AB是双曲线x2/a2-y2/b2=1的任意一条弦,O为双曲线的中心,e为双曲线的离心率,M为AB的中点,即k_(AB)·k_(OM)=e2-1. 下面给出命题1的证明(命题2同理可证)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号