首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
题目 若cosα -cosβ =12 ,①sinα -sinβ=- 13,②求 sin(α β) .赵春祥老师在文 [1]中介绍了一种学生的解法和他的两个启示 ,所介绍的学生解法是先由①2 ②2 求得cosα(α - β) =5 972 ,再由①2 -②2 得到cos(α β) [2cos(α - β) - 2 ]=  相似文献   

2.
解三角题时 ,若选择的方法适当 ,则能起到事半功倍的效果 ,否则 ,费时费力 .下面举例说明解三角题的十种技巧 .一、变角在三角化简和求值时 ,若表达式中出现多个相异的角 ,则选定一个目标 ,将各角朝着这个目标转化 .例 1 已知tg(α β) =4,tg(α -β) =2 ,求sin4α .分析 :此题出现了三种相异的角 :α β ,α-β ,4α ,选定 2α ,因为 (α β) (α -β) =2α ,4α =2 (2α) ,然后适当地选择公式求解 .解 :∵tg2α=tg[(α β) (α-β) ]=tg(α β) tg(α-β)1 -tg(α β)tg(α -β) =-67,∴sin4α =2tg2…  相似文献   

3.
错在哪里     
1 安徽淮南十六中 刘华为  (邮编 :2 32 0 53)题 已知cosαcosβ =1 /2 ,sinαsinβ =m ,求m的取值范围。解一 ∵cosαcosβ sinαsinβ=( 1 /2 ) m ,∴cos(α -β) =( 1 /2 ) m ,∴ -1≤ ( 1 /2 ) m≤ 1 ,∴ -3/2≤m≤ 1 /2。又 -1≤sinαsinβ≤ 1 ,故 -1≤m≤ 1 /2。解二 仿照解法一易得cos(α β) =( 1 /2 ) -m ,综合 -1≤cos(α β)≤ 1 ,得 -1 /2≤m≤ 3/2。又 -1≤sinαsinβ≤ 1 ,故 -1 /2≤m≤ 1。解三 ∵ 1 /4 =cos2 αcos2 β=( 1 -sin2 α) ( 1 -…  相似文献   

4.
题目 已知cos(α π4) =35,2π ≤α <32 π 求cos(2α π4)解法 1 由cos(α π4) =35,可得 cosα -sinα =3 25… (1)再由sin2 α cos2 α =1,得 :2cos2 α -625cosα -72 5=0 ,解得cosα =-210 或7210 ,又 π2 ≤α <32 π ,所以cosα=-210 ,sinα=-7210 ,所以cos2α=cos2 α-sin2 α=-2 42 5,sin2α =72 5所以cos(2α π4) =22 (cos2α -sin2α)=-3 1250 .解法 2 易知cosα=-210 ,记x =cos(2α π4)所以cos π4 cos(α π4) cos(2α π4) =[c…  相似文献   

5.
在三角函数这一章的学习过程中常遇到已知三角函数值求角度这方面问题 ,此类问题怎样求解较好呢 ?请看下面几例 :例 1 已知α、β都是锐角 ,且sinα =55,sinβ=1 01 0 ,求证 :α +β=π4.分析 ∵α、β都是锐角 ,且sinα =55,sinβ=1 01 0 ,∴cosα =1 -sin2 α=1 -15=2 55. cosβ=1 -sin2 β=1 -11 0 =3 1 01 0 .∴sin(α +β) =sinαcosβ+cosαsinβ=55×3 1 01 0 +2 55× 1 01 0 =22 .∴    α+β =π4.这种解法有没有错误呢 ?如果有 ,错误又在什么地方呢 ?∵ 0 <α<π2 ,0 <β<π2 ,∴ …  相似文献   

6.
一、整体代入 解某些涉及若干个量的求值题时要有目标意识 ,将题中一些已知式子视作一个整体代入运算 ,可以避免非必求的量参与运算所带来的困难或麻烦 .例 1 已知tanαcotβ =5,求sin(α + β)csc(α - β)的值 .解 :∵ tanαcotβ =5,∴ sin(α + β)csc(α - β) =sin(α+ β)sin(α- β) =sinαcosβ +cosαsinβsinαcosβ -cosαsinβ=tanαcotβ + 1tanαcotβ - 1=32 .二、整体变形 对于某些问题 ,只是静止地观察整体 ,或许仍然不能取得满意的效果 ,若作整…  相似文献   

7.
公式sin2 α cos2 α =1反映了同一个锐角α的正弦和余弦之间的关系 .应用这一关系 ,许多较复杂的问题可获得简捷的解答 .例 1 sin53°cos37° cos53°sin37° =.( 1 998年山西省中考题 )解 ∵  53° 37°=90° ,∴ cos37°=sin53° ,sin37°=cos53°.∴ 原式 =sin2 53° cos2 53°=1 .例 2 已知sinα cosα=m ,sinα·cosα =n ,则m、n的关系是 (   ) .(A)m =n    (B)m =2n 1(C)m2 =2n 1 (D)m2 =1 -2n( 1 999年天津市中考题 )解 将sinα cosα =m…  相似文献   

8.
有些三角问题 ,若能根据已知式的结构 ,挖掘出它的几何背景 ,通过构造解析几何模型 ,化数为形 ,利用数学模型的直观性 ,简捷地求得问题的解.一、构造“直线模型”例1已知cosα -cosβ= - 23,sinα -sinβ,求cos(α +β)与cosα + cosβsinα + sinβ 的值.解 :因为点A(cosα ,sinα)、B(cosβ,sinβ)在单位圆x2+y2=1上.所以直线AB的斜率KAB= sinα-sinβcosα - cosβ= - 34.设直线AB的方程为 y= - 34x+b ,代入x2+y2=1得 :25x2-24…  相似文献   

9.
定理 1 设α ,β ,γ∈R ,则有cos2 αsin( β γ)sin( β-γ) cos2 βsin(γ α)sin(γ -α) cos2 γsin(α β)sin(α - β) =0 . ( 1)  定理 2 设α ,β ,γ∈R ,则有sin2 αsin( β γ)sin( β -γ) sin2 βsin(γ α)sin(γ-α) sin2 γsin(α β)sin(α- β) =0 ( 2 )  证明 沿用文〔1〕、〔2〕的方法 ,构造二元一次方程组xcos2 α ycos2 β =cos2 γ , (a)xsin2 α ysin2 β =sin2 γ . (b)由 (a)、(b)两式可得xsin( β α)s…  相似文献   

10.
吴国胜 《数学教学研究》2000,(2):F003-F003,F004
定理 设α、β、γ∈R ,则有cosαsin ( β -γ) cosβsin (γ -α) cosγsin (α - β) =0 . ( 1)sinαsin ( β -γ) sinβsin (γ -α) sinγsin (α - β) =0 . ( 2 )证明 构造二元一次方程组xcosα ycosβ =cosγ ,(a)xsinα ysinβ =sinγ . (b)由 (a)、 (b)两式可得xsin(α- β) =sin(γ - β) ,(c)ysin(α- β) =sin(α -γ) . (d)  将 (a)式两边同乘sin (α - β)后 ,再将(c)、 (d)两式代入即得 ( 1) .将 (b)式两边同乘sin (…  相似文献   

11.
在三角函数的条件求值问题中 ,常需要运用整体观念 ,巧变角 ,沟通条件式和欲求式之间的关系 .现举两例说明 .例 1 已知cosα-π3 =1 51 7.,-π2 <α<0 ,求cosα的值 .分析 若将条件式cosα-π3 直接展开求cosα ,虽然思路清晰 ,但无疑有一定的计算量 .若将α-π3 看作整体 ,则cosα =cosα -π3 +π3=12 cosα-π3 -32 sinα-π3=1 53 4-32 sinα -π3 ,∵ -π2 <α<0 ,∴ -5π6<α -π3 <-π3 ,∴sinα -π3 =-81 7,∴cosα=1 5+833 4.注 本题通过角的变换α=α-π3 +π3 ,只需求出sinα -π3 的值…  相似文献   

12.
我们知道 ,asinα+bcosα =a2 +b2 sin(α +φ) ,其中 φ角所在象限由a、b的符号确定 ,φ角的值由tanφ =ba 确定 ,这个公式称为辅助角公式 .该公式在解题中有广泛的应用 .一、求最值例 1 求函数 y =3sin(x +2 0°) +5sin(x +80°)的最大、最小值 .解 :令θ =x +2 0°,则y =3sinθ +5sin(θ +6 0°) =3sinθ+512 sinθ+32 cosθ =112 sinθ +52 3cosθ=7sin(θ +φ) .∴ y的最大、最小值分别为 7、- 7.二、求值例 2 若函数f(x) =sin2x +acos2x的图象关于直线x =- …  相似文献   

13.
已知某些条件求三角函数的值或对应角是三角习题中常见题型 .这类习题难度不大 ,但学生在处理此类习题时常出现漏解、增解现象 .究其原因 ,是对题设中隐含着的角的范围挖掘不够所致 .本文结合具体例子谈谈这类习题中应注意挖掘的几个方面 .1.注意轴线角的挖掘轴线角是指角的终边落在坐标轴 (x轴或y轴 )上的角 ,这些角的三角函数值为特殊值或不存在 .解题时应注意挖掘 .例 1 已知sinα =2sinβ ,tgα =3tgβ,求cosα .误解 :∵cosα =sinαtgα=2sinβ3tgβ=23 cosβ ,∴cosβ =32 cosα .又sinβ …  相似文献   

14.
运用三角变换固然是解三角题的基本方法 ,但由于三角中的诱导公式较多 ,因此就形成了丰富多彩的变换技巧 .本文试图通过挖掘知识间的横向联系 ,针对题目的特点 ,另辟蹊径 ,实施非三角变换 .这对于发展智力、活跃思维、提高能力大有裨益 .1 代数化策略将三角函数用字母代换 ,转化成代数问题求解 .例 1 已知sinα-cosα =12 ,求sin4α cos4α-sin2 αcos2 α的值 .解 :设sinα =a ,cosα=b ,则a2 b2 =1a-b=12,从而解得 ,ab=38.∴sin4α cos4α -sin2 αcos2 α =(a2 b2 ) 2-3a2 b2 =1 -…  相似文献   

15.
成果集锦     
广义射影定理定理 在△ABC中 ,AD是高 ,AB =c,AC =b.(1 )若D在边BC上 ,则AD2 -CD·BD =AC2-BC·CD =AB2 -BD·BC =bccosA ;(2 )若D在BC或CB的延长线上 ,则AD2 CD·BD =AC2 ±BC·CD =AB2 BD·BC =bccosA .证明 :(1 )当D与B或C重合时 ,等式显然成立 .当D在BC上时 ,如图 ,记∠CAD =α ,∠BAD =β ,则cosA =cos (α β)=cosαcosβ-sinαsin β=ADb ·ADc -CDb ·BDc=AD2 -CD·BDbc .∴AD2 -CD·BD =bcc…  相似文献   

16.
题目 已知复数z1 =i(1 -i) 3.(Ⅰ )求argz1 及 |z1 | ;(Ⅱ )当复数z满足|z|=1 ,求|z-z1 |的最大值 .(Ⅰ )解略 .下面给出 (Ⅱ )的七种解法 :解法 1 (三角形式法 )设z=cosα isinα ,则z-z1 =(cosα -2 ) (sinα 2 )i;∴ |z -z1 |=(cosα-2 ) 2 (sinα 2 ) 2=9 42sin(α-π4)≤ 9 42 =2 2 1 .上式等号当且仅当sin(α-π4) =1时取到 .从而得到|z-z1 |的最大值为 2 2 1 .解法 2 (代数形式法 ) 设z=a bi(a ,b∈R) ,且a2 b2 =1 ,则|b-a|2 =|a2 b2-2a…  相似文献   

17.
由正、余弦的三倍角公式sin3θ =3sinθ- 4sin3 θ ,cos3θ=4cos3 θ- 3cosθ ,可得衍生公式 1sin3 α =14(3sinα -sin3α) ,cos3 α =14(3cosα +cos3α) .衍生公式 1的优点是 :对正弦、余弦的三次乘方形式可直接降幕 .例 1  (1994年全国高考题 )求函数y=1cos2 2x(sin3xsin3 x+cos3xcos3 x) +sin2x的最小值 .解 由公式 1,原函数变为y=1cos2 2x[sin3x· 14(3sinx-sin3x)  +cos3x· 14(cos3x+ 3cosx) ]+sin2x=1cos2 2x(34sinxs…  相似文献   

18.
数学问题中条件有明有暗 ,明者易于发现便于利用 ,暗者隐含于有关概念 ,知识的内涵之中 ,含而不露、极易忽视 ,稍不留心便导致解题出错 .特别是解三角函数题目 ,因对隐含条件挖掘不够导致出现错误的现象尤为严重 .那么隐含条件怎样挖掘呢 ?本文尝试通过实例作些粗浅探讨 .1 从三角函数的定义 ,公式和性质中挖掘隐含条件例 1 设sinα +cosα=k ,若sin3 α +cos3 α <0 ,求k的取值范围 .错解 ∵sinα+cosα =k ,∴sinαcosα=k2 - 12 .由sin3 α+cos3 α=(sinα+cosα) (1-sinαcosα)=k 1…  相似文献   

19.
20 0 0年北京、安徽春季高考数学试题体现了以能力立意的命题思想 ,涌现出了许多考查能力的创新试题 .本文将对选择、填空题中的部分创新试题给出较简捷解法 ;对解答题中的把关题给出别解 ,并做简要评析 ,供大家参考 .选择题 ( 11)  解法 1(直接法 ) :∵z2 =( 2sinθ icosθ)·[cos( - 34π) isin( - 3π4 ) ]=( 22 cosθ- 2sinθ) - ( 2sinθ 22 cosθ)i,∴tgφ =- ( 2sinθ 22 cosθ)22 cosθ - 2sinθ=2sinθ cosθ2sinθ-cosθ.又∵ π4 <θ <π2 ,∴cosθ≠ 1,∴tgφ…  相似文献   

20.
求三角函数的最值问题是三角函数中较为重要的一个知识点;其题目类型变化多端.解法灵活多变,若能在教学中不断的归纳总结,则可培养学生多向思维的能力.本文就此举例介绍几种常用方法.1 化为Asin(wx+φ)+K的形式例1 求函数y=sin2x+2sinx·cosx+3cos2x的最大值解:y=sin2x+2sinx·cosx+3cos2x=2sinxcosx+2cos2x+1=sin2x+cos2x+2=2sin(2x+π4)+2∴当sin(2x+π4)=1时, ymax=2+22 配方法例2 求函数y=1-5sinx+2cos2x的最小值解:y=1-5sinx+2cos2x…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号