首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
柳高稳 《甘肃教育》2020,(4):187-187
一、函数凹凸性的概念及基本性质探讨。定义设f为定义在区间I上的函数,若对任意两点x1,x2和实数0<λ<1,总有f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)f(x2),则称f为I上的凸函数;反之,如果总有不等式f[λx1+(1-λ)x2]≥λf(x1)+(1-λ)f(x2),则称f为I上的凹函数。  相似文献   

2.
胡浩鑫 《考试周刊》2008,(22):111-112
凹凸性是函数的重要性质,定义为:若函数f(x)在开区间I有定义,且对任意的x1,x2∈I,t∈(0,1)均有f[tx, (1-t)x,]≥(≤)tf(x1) (1-t)f(x2|)成立,则称f(x)在区间I上是凹(凸)函数.函数凹凸性的判定常用如下定理:设f(x)在I内二阶可导,则f(x)是I上的凹(凸)函数的充要条件是f″(x)≤(≥)0,(x∈I).若f(x)在I上是凸函数,则-f(x)在I上为凹函数,所以讨论凸函数可以转化为讨论凹函数.  相似文献   

3.
文[1]、[2]中给出了凸函数的一般定义,讨论了不同条件下凸函数的一些基本性质及其判定定理。本文将在此基础上进一步地给出一般条件下凸函数的又一个等价命题及其若干简单应用。凸函数定义称函数 f(x)为区间Ⅰ上的凸函数。如果(?)x,y∈I,(?)λ∈(0,1)有(?)λx+(1—λ)y]≤λf(x)+((?)-λ)f(y)。在这个一般定义下,[1],[2]得到了凸函数的几个判定定理:定理1 下面几个命题等价:(1) f(x)为区间Ⅰ上的凸函数;  相似文献   

4.
凸函数问题是比较普遍的,它往往与不等式联系起来。本文将归纳出一些凸函数不等式以及其积分推广形式。 (一)可微凸函数的基本性质定义:设函数f(x)在开区间1內有定义,若时任意的x_1、x_2∈I和α∈(0,1),都有(1)并且仅当x_1=x_2时,等号成立。则称f(x)为I内严格下凸函数,或f(x)在I内严格下凸。  相似文献   

5.
定义:设函数y=f(x)在区间I上有定义,若对于任何两点x_1,x_2∈I(x_1相似文献   

6.
1凸函数的定义及性质 凸函数的定义当x∈区间I时,若函数f( x)满足f″( x)≤(≥)0恒成立且f″( x)=0的解集是孤立的点集,即f′( x)是减(增)函数,则f( x)是I上的上(下)凸函数。  相似文献   

7.
<正>1凸函数的定义及性质凸函数的定义当x∈区间I时,若函数f(x)满足f″(x)≤(≥)0恒成立且f″(x)=0的解集是孤立的点集,即f'(x)是减(增)函数,则f(x)是I上的上(下)凸函数.例如,f(x)=xα(0<α<1,x>0),g(x)=logax(a>1,x>0),h(x)=sinx(0≤x≤π)都是上凸函数.凸函数的性质1函数f(x)是区间I上的上凸函  相似文献   

8.
定义:一般地,设函数f(x)的定义域为I:如果对于属于定义域I内某个区间上的任意两个自变量的值x,,x:,当x,f(x:)),那么就说f(x)在这个区间上是增函数(或减函数). 一、定义剖析 设区间A二I,把定义分解为三块: 1 .x,f(x:)); 3.f(x)在区间A上是增函数(或减函数)‘ 二、结论挖掘 )冷2;}冷1;3】3} 八O 冷..工O︸︼ 由三、结论应用(一)二补3 【例1]判断f(x)一石在区间(0,十二)上的单调性. 解:设o相似文献   

9.
由函数单调性的定义容易知道:(1)若函数f(x)在区间I上单调递增,且x1,x2∈I,则f(x1)x2;(3)若函数f(x)在区间I上单调,且x1,x2∈I,则f(x1)=f(x2)x1=x2;根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用的技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.下面举例说明这一思想在解题中的若干应用.一、求值例1设x,y为实数,且满足(x-1)3+1997(x-1)=-1(y-1)3+1997(y-1)=1,则x+y=.解:由已知条件,可得:(x-1)3+1997(x…  相似文献   

10.
函数的单调性是函数的一个非常重要的性质,新教材全日制普通高级中学(试验修订本必修)(数学)对函数的单调性定义如下: 一般地,设函数f(x)的定义域为I。如果对于属于定义域I内的某个区间上的任意两个自变量的值x_1,x_2,当x_1相似文献   

11.
文[1]介绍了定理"已知函数f(x)在区间I上可导,x0∈I,若f(x)在区间I上为下凸函数,则f(x)≥f(x0)(x-x0)+f(x0);若f(x)在区间I上为上凸函数,则不等号反向."并利用它来证明一类对称不等式.事实上,当函数f(x)在区间I上可导时,定理中的不等式与琴生不等式等价,且这类对称不等式用琴生不等式证明更显简洁、高效.  相似文献   

12.
设函数f(x)定义在区间I上且x1,x2∈I,则①若函数f(x)在区间I上是单调增(或减)函数,则x1f(x2)).②若函数f(x)在区间I上是单调函数,则x1=x2f(x1)=f(x2).③若函数f(x)在区间I上是单调函数,则方程f(x)=0在区间I上至多有一个实数根.④若函数f(x)与g(x)的单调性相同,则在它们公共的定义域内,函数f(x) g(x)亦与它们的单调性相同.⑤复合函数y=f(u)(u=g(x))的单调性适合“同增异减”规律,即若f(x)与g(x)的单调性相同(或相异),则y=f[g(x)]为增(或减)函数.⑥互为反函数的两个函数在各自的定义域内具有相同的单调性.运用…  相似文献   

13.
众所周知,定义在某区间I上的函数:y=f(x),若存在二阶导数,则下面两个不等式成立。(参考文[1]) (甲)当x∈I,恒有y″>0(这时f(x)为下凸函数)  相似文献   

14.
函数的单调性是函数的一个重要性质,学会判断函数的单调性对学生来说尤为重要。函数单调性的定义是我们判断函数单调性的主要依据。一、判断函数单调性的几种方法1.定义法:一般地,设函数f(x)的定义域为I,如果对于定义域I内的某个区间D上的任意两个自变量的值x_1,x_2,当x_1x_2时,都有f(x_1)>f(x_2),那么就说函数f(x)在区间D上是减函数。  相似文献   

15.
2002年全国高考北京卷第12题如下: 题目:如图(1)所示,fi(x)(I=1,2,3,4)是定义在[0,1]上的四个函数,其中满足性质:"对[0,1]中的任意x1和x2,任意λ∈[0,1],f[λx1+(1-λ)x2]≤λf(x1)+(1-λ)·f(x2)恒成立"的只有( ).  相似文献   

16.
引言文[1][2][3]围绕不等式进行了一系列的探讨,得到了不少的结果。本文通过对凸函数的一个性质的讨论,得到了这类问题的一个普遍的结果。一、预备知识定义设f(x)是定义在区间C上的实值函数,若(?)x_1,x_2∈C,(?)α∈(0,1),恒有f(αx_1 (1-α)x_2)≤αf(x_i) (1-α)f(x_2)(1)则称f(x)为区间C上的凸函数。若(?)x_1,x_2∈C,x_1≠x_2,(?)α∈(0,1),恒有f(αx_1 (1-α)x_2)<αf(x_1) (1-α)f(x_2)(2)则称f(x)为区间C上的严格凸函数。  相似文献   

17.
我们将没有明确给出解析式的函数称为抽象函数,本文就如何确定抽象函数的周期性通过实例介绍一些技巧,供学习参考。 1 合理赋值 在确定抽象函数的周期时,如果题设条件中含有f(a)=b(a、b为常数)等类似条件时,合理赋以特殊值,常可使问题迎刃而解。 例1: 设函数f(x)是定义在R上的奇函数,且f(1)=0,并对任何x∈R均有f(x+2)-f(x)=f(2),则f(x)是以2为周期的周期函数。 分析:因为f(x)是R上的奇函数,所以对一切x∈R都有:f(-x)=-f(x) 又f(x+2)-f(x)=f(2)。 令x=-1,得f(1)-f(-1)=f(2), 即f(1)+f(1)=f(2), 从而f(2)=2f(1)=0 所以f(x+2)=f(x)+f(2)=f(…  相似文献   

18.
分段函数是定义在不同区间上解析式也不相同的函数 .已知一个函数在某一区间上的解析式 ,求它在另一个区间上的表达式 ,这是分段函数中最常见的问题 .由于给出条件的不同 ,常有如下分类 .1 关于直线 x=a对称若题设中有函数图象关于直线 x=a对称的条件 ,则有 f (x) =f (2 a- x) ,特别地 ,当 a=0时 ,则 f (x) =f(- x) ,即此函数为偶函数 .例 1 已知函数 y=f(x)的图象关于直线 x=1对称 ,若当 x≤ 1时 ,y=x2 + 1,则当x>1时 ,y=.(1991年上海高考题 )解 当 x>1时 ,则 2 - x<1,依题设有f(2 - x) =(2 - x) 2 + 1.又 y=f (x)的图象关于 x=1对称 ,…  相似文献   

19.
一个不等式的推广   总被引:2,自引:0,他引:2  
文 [1 ]中有如下一个不等式 :设 0 相似文献   

20.
凸函数     
凸函数是数学分析中的一种很重要函数,关于凸函数,很多数学分析书中作了介绍,但是大都显得很零碎,为了使大家对凸函数有一个较全面的了解,本文将对凸函数的性质(包括定义),以及由凸函数的定义和性质所引出的一些命题,作一个较详细的说明,然后对凸函数的应用作简要的介绍。 首先,我们还是从凸函数的定义入手 定义:在区间I上的实值函数f(x)称为凸函数是指:对于x_1,x_2∈I及λ∈[0,1],  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号