首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
首先让我们来看一道例题:例:解分式方程2x 1 x-31=x26-1①.解:方程两边都乘以(x 1)(x-1),得2(x-1) 3(x 1)=6.解这个整式方程,得x=1.检验:当x=1时,(x 1)(x-1)=0,∴x=1是增根,故原分式方程无解.从解方程的过程可以看到:为解分式方程,需要在①的两边都乘以最简公分母(x 1)(x-1),达  相似文献   

2.
一、忽略了对根的检验例1解方程:6/(x~2-1)-3/(x-1)=2/(x 1).错解:方程的两边同乘以最简公分母(x 1)(x-1),得6-3(x 1)=2(x- 1).解这个方程,得x=1.所以原方程的根是x=1.剖析:分式方程是通过转化为整式方程来求解的,解题过程中有可能产生增根,所以求出的根必须检验.正解:方程的两边同乘以最简公分母(x 1)(x-1),得6-3(x 1)=2(x- 1).解这个方程,得x=1.  相似文献   

3.
解分式方程的基本思想是去分母转化为整式方程,常用的转化途径是在方程的两边都乘以最简公分母.对于某些问题,利用拆项方法,可使解分式方程的过程巧妙、简捷.例1.解方程xx-5=xx--62解:不难发现,xx-5=(x-x-5)5 5=1 x-55,x-2x-6=(x-x6-)6 4=1 x-46∴1 5x-5=1 x-46∴x-55=x-46∴5(x-6)=4(x-5)解之,得x=10经检验,x=10是已知方程的解.例2.解方程x-4x-5-xx--65=xx--87-xx--98解:已知方程化为(1 1x-5)-(1 x-16)=(1 x-18)-(1 x-19)∴1x-5-x-16=x-18-x-19∴-1x2-11x 30=x2-1-71x 72∴x2-11x 30=x2-17x 72解之,得x=7.经检验,x=7是已知方程的解.例3.解…  相似文献   

4.
定理关于x的方程x+nx=a+na(an≠0)的解为x=a或x=na.证明:将原方程去分母,得ax2+an=a2x+nx,即ax2-(a2+n)x+an=0,所以(x-a)(ax-n)=0,解得x=a或x=na.经检验,x=a和x=na都是原方程的解.由这个定理,可以得到下面的推论.推论关于x的方程x+1x=a+a1的解为x=a或x=1a.掌握上述定理和推论,可以帮助我们巧解一些分式方程和分式求值问题.一、解分式方程例1解关于x的方程x+1x-1=a+a-11.解:原方程可化为(x-1)+1x-1=(a-1)+1a-1.由上述推论,得x-1=a-1或x-1=1a-1.由x-1=a-1,得x=a;由x-1=1a-1,得x=aa-1.经检验,x1=a,x2=a-a1均是原方程的解.例2解方程3xx2-1+x32-x…  相似文献   

5.
解分式方程的基本方法是在方程两边都乘以各分式的最简公分母,约分后化为整式方程而求解.但对于有些分式方程,若根据其结构特征,采用某些特殊的解法,可以使解题过程变得更简捷.下面我们来看几个具体的例子.一、移项合并法例1解方程6=x-x.x-6x-6解:移项,得x=x-6,即x=x-6.x-6x-6x-6因为x-6,所以x=1.≠0经检验,是原方程的根.x=12 x=x-2.x练习解方程x-2(答案:1)二、分子相等法例2解方程4=5.x 32x 3解:原方程可化为20=20,即5(x 3)4(2x 3)5(x 3)=4(2x 3).解得x=1.经检验,是原方程的根.x=1练习解方程2=3.x 12x 3(答案:-3)三、等式性质法例3解方程x-…  相似文献   

6.
1.忽视方程的同解 例1 解方程:(x-1)(x-2)=x-1. 错解:两边除以(x-1),得 x-2=1,x=3. 评注:忽视了方程的同解,方程两边除以(x-1)就可能导致丢根x=1.为此,把原式整理成(x-1)(x-2-1)=0. ∴x_1=1,x_2=3为所求. 例2 解方程:(x a)/(x-b) (x b)/(x-a)=2. 错解:两边同乘以(x-b)(x-a),有 (x a)(x-a) (x b)(x-b) =2(x-a)(x-b), 即2(x-a)x=(a b)~2. ∴当a b≠0时,x=(a b)/2.  相似文献   

7.
某出版社的义务教育标准实验教科书《数学》(七年级下册)“分式方程”一节中的例1如下:例1 解分式方程(x+3)/(2x-4)=3/4.解:方程两边同乘4(2x-4),得4(x+3)=3(2x-4).去括号,得4x+12=6x-12.移项,合并同类项,得2x=24.∴x=12.把 x=12代入原方程检验,  相似文献   

8.
方程与不等式是两个不同的概念,但它们之间却有着千丝万缕的联系.尤其是在解含有字母系数的方程(组)时,常常需要通过解不等式来完成.举例说明如下:例1已知关于x的方程4x-m 1=5x-1的解是负数,求m的取值范围.解:解关于x的一元一次方程4x-m 1=5x-1得x=2-m.因为x<0,所以2-m<0.所以,m>2.例2已知(x-2)2 2x-3y-a=0中,y为正数,则a的取值范围是().A.a<2B.a<3C.a<4D.a<5解:由题设及非负数性质得:x-2=0,2x-3y-a=0!;解得x=2,y=4-a3"$$#$$%.因为y>0,所以4-a3>0.解得a<4.选C.例3设有方程组3x ay=5,x 2y=1!.问a为何值时,y<0?解:3x ay=5,(1)x 2y=1.(2!…  相似文献   

9.
初中《代数》第三册P.115例5是:已知方程x~2-2x-1=0,利用根与系数关系求一个一元二次方程,使它的根是原方程的各根的立方。其实,本题若不利用根与系数的关系,也可获解,请看: 解:设y为新方程任一根,则对原方程相应的根x有:y=x~3。由原方程得:X~2=2x+1,所以x~3=2x~2+x=2(2x-1)+x=5x+2。因此,y=5x+2,即x=(y-2)/5,将它代入原方程并化简即得所求方程:y~2-14y-1=0。  相似文献   

10.
增根的妙用     
解分式方程可能产生增根,因此验根是解分式方程必不可少的步骤.不可否认,增根的出现给我们解题带来了麻烦,但这是问题的一个方面,从下面的例子你将会感到,在求解含有字母系数的分式方程时,巧用增根的有关知识将会使问题迎刃而解.现举例说明.例1关于x的方程x2 x 1x-1=m 1x-1与x2 x=m的解相同,m应满足什么条件?解:在方程x2 x 1x-1=m 1x-1中,x≠1.当x≠1时,方程两边可同减去1x-1,得x2 x=m,两者同解.当x≠1时,由x2 x=m,有m≠2.当m≠2时,方程x2 x=m必定不会有x=1的解,所以这时两方程同解.例2关于x的方程1x-2=4x2-4-kx 2有增x=-2,求k的值.解:原分…  相似文献   

11.
《中学生数理化》2007,(10):37-38,59
一、选择题1.下列方程中,是一元一次方程的为().A.2x-y=1B.x2-y=2C.y2-2y=3D.y2=42.根据等式的性质,下列各式变形正确的是().A.由-13x=32y,得x=2yB.由3x-2=2x 2,得x=4C.由2x-3=3x,得x=3D.由3x-5=7,得3x=7-53.下列方程与方程2x-3=x 2有相同解的是().A.2x-1=x B.x-3=2C.3x-5=0D.3  相似文献   

12.
在一元一次方程的求解过程中,一些初学者由于忽视了变形前后的同解性,常会出现这样那样的错误.现就几类比较常见的病例,简要分析如下.一、解题格式不对致错例1解方程5x-2=3x 4.错解:5x-3x=4 2=2x=6=x=3.评析:这里混淆了方程的同解变形和代数式的恒等变形,解方程进行同解变形时不能用等号连等.二、移项不变号致错例2解方程5x 1=3x 7.错解:5x 3x=7 1.解得:x=1.评析:移项法则掌握不牢,方程中的项从等式的一端移到另一端时,一定要改变原来的符号.三、去括号忘记法则致错例3解方程5x-2(8-x)=6x-3(4-x).错解:5x-16-x=6x-12-x.移项、合并同类项,得-…  相似文献   

13.
1.去分母时漏乘项. 例1.解分式方程5-x/x-4+1/4-x=1 错解:两边同时乘以最简公分母(x-4)得:5-x-1 =1 即:x=3 检验:x=3时,x-4=3-4=-1≠0 所以:x=3是原方程的根. 错因分析:最简公分母是(x-4),方程的两边同时(x-4)时,右边的1漏乘了(x-4),所以是漏乘项导致错误.  相似文献   

14.
在熟练掌握一元一次方程解法的基础上,若能抓住方程特征,并根据不同特征得到巧解。一、巧用乘法例1解方程0.25x=2.分析:因0.25×4=1,故两边同乘以4要比两边除以0.25简便易求。解:两边同乘以4,得x=8.二、直接加减例2解方程191z+72=92z-75.分析:常规方法是先去分母,注意到191z-29z=z,-75-27=-1,直接移项加减更快。解:移项,得191z-92z=-75-72,∴z=-1.三、巧对消例3解方程x-31[x-31(x-9)]=19(x-9).分析:从整体上观察方程两边,左边先去中括号有91(x-9)这一项,这可与右边的相同项对消。解:去中括号,得x-31x+91(x-9)=91(x-9),∴x-31x=0,故x=0.四、…  相似文献   

15.
题 用换元法解方程((x 2)/(x-1))~(1/2) ((x-1)/(x 2))~(1/2)=5/2。 (人教版初中代数第三册第57页第3题) 解法一 (运用倒数关系换元) 设((x 2)/(x-1))~(1/2)=y,则((x-1)/(x 2))~(1/2)=1/y, ∴原方程化为y (1/y)=5/2, 解这个方程,得y_1=2,y_2=1/2。 当y=2时,((x 2)/(x-1))~(1/2)=2, 解之,得x_1=2;  相似文献   

16.
<正>在初中数学教材中先后出现了可化为一元一次方程的分式方程和可化为一元二次方程的分式方程的相关问题.其中,让学生一直感到困惑的是与增根有关的问题.下面就常见的几种情况加以分析.题型一、解分式方程例1(2008南京中考)解方程:2/x+1-x/x~2-1=0.错解方程两边同乘(x-1)(x+1),得2(x-1)-x=0.解这个方程,得x=2.所以,x=2是原方程的解.  相似文献   

17.
【例1】解方程:1-41-x=5x--4x【错解】方程两边都乘以x-4,得1 1=5-x解得x=3【剖析】上述解答错误的原因有两点:一是去分母时没有把单独的整式1作为一项,乘以公分母x-4;二是忘记了“解分式方程必须检验”的要求.【正解】方程两边都乘以公分母x-4,得x-4 1=5-x解得x=4检验:当x=4时  相似文献   

18.
活用一次方程或一次方程组的解可巧妙解题 ,现略举几例 ,供同学们学习时参考 .例 1 已知关于 x、y 的方程组3x - 4y=- 6 ,ax + 2 by=- 4和 3bx+ 2 ay=0 ,2 x- y=1有相同的解 ,求 a和 b的值 .分析 :两个方程组的解相同 ,则这个解必定同时适合这两个方程组中的四个方程 ,从而它必定是方程组( 1) 3x- 4y=- 6 ,2 x- y=1和 ( 2 ) ax+ 2 by=- 4,3bx+ 2 ay=0 的解 .因此 ,可有如下巧解 .解 :解方程组 3x- 4y=- 6 ,2 x- y=1. 得 x=2 ,y=3.把 x=2 ,y=3.代入 ( 2 )可得 2 a+ 6 b=- 4,6 a+ 6 b=0 .解之 ,得 a=1,b=- 1.例 2 王明和李芳同求方程 ax + b…  相似文献   

19.
分式方程是每年各地中考的重要考点之一,但在解分式方程的过程中,常出现这样或那样的错误,下面举例归类剖析.一、忽视验根或验根不正确致错例1解方程x-2/x+2-x+2/x-2=16/x~2-4.错解1方程两边同乘(x+2)(x-2),得(x-2)~2-(x+2)~2=16.解这个方程,得x=-2,  相似文献   

20.
用适当方法构造与原问题有关的方程,利用方程的知识使原题获解,此为“辅助方程法”。一、解方程(组) 例1 解关于x的方程 x~4 6x~3-2(a-3)x~2 2(3a 4)x 2a a~2=0 解:化为a的方程: a~2-2(x~2-3x-1)a (x~4-6x~3 6x~2 8x)=0解得a=x~2-4x,a=x~2-2x-2。故得原方程的解x_(1,2)=2±4~(1/2) a,x_(3,4)=1±(3 a)~(1/2)(注;a<-3时,有虚根)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号