首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
一九八三年芜湖市中学生数学竞赛中有这么一道题: 如图,△ABC、△A′B′C′为同一平面内的两个正三角形,P、Q、R分别是AA′、BB′和CC′的中点,试证明△PQR也是正三角形。这道题就是所谓的爱可尔斯定理。它是美国人爱可尔斯(Echols)在一九三二年发现的。它的证法很多,下面给出两种证法。  相似文献   

2.
命题:△ABC的外接圆半径R与内切圆半径间成立不等式:R≥2r。证:(见原文图)过△ABC的顶点作对边的平行线,三直线围成△A′B′C′,则△ABC∽△A′B′C′,K=AB/A′B′=1/2。作外接圆的三条切线,分别平行于△A′B′C′的三边,围成△A″B″C″,(使△ABC的外接圆在为△A″B″C″的内切圆),△ABC∽△A″B″C″、  相似文献   

3.
由正弦定理出发,我们可以得到如下定理:△ABC中,以sinA、SinB、sinC为边可以构造△A′B′C′。且△ABC∽A′B′C′,△A′B′C′外接圆直径为1。证明:设△ABC外接圆半径为R, sinA+sinB=1/2R (a+b)>1/2R·C=sinC。同理可证 sinA+sinC>sinB,sinB+sinC>sinA。因此以sinA、sinB、sinC为边可以构造△A′B′C′。由正弦定理 a/sinA=b/sinB=c/sinC,因此△ABC∽△A′B′C′,则A=A′,B=B′,C=C′。设△A′B′C′外接圆半径为R′,对△A′B′C′施行正弦定理,则sinA/sinA′=2R′=1。由这个定理出发,有下面的二个应用。一、关于三角形中一些恒等式和不等式的互证  相似文献   

4.
02年初中联赛试题第2试A卷第2题: 如图,等腰△ABC中,P为底边BC上任意一点,过P作两腰的平行线分别与AB、AC相交于Q、R两点,又P’是关于直线RQ的对称点,证明:△P’QB∽△P’RC. 证明由对称性,知∠P’RQ=∠PRQ=a,  相似文献   

5.
36.将△ABC的高AA_1、BB_1、CC_1分别向外延长至A′、B′、C′,使AA′=K/AA_1,BB′=K/BB_1,CC′=K/CC_1(K为常数)。求证:(1)△A′B′C′与△ABC的重心重合;(2)当且仅当ABC为正三角形时,两三角形的垂心重合。  相似文献   

6.
第32届IMO第一题是: 已知△ABC,设I是它的内心,角A,B,C的内角平分线分别交其对边于A’,B’,C′。求证: 1/4∠AI·BI·CI/AA′·BB′·CC′≤8/27 本题可作如下推广命题1 已知I是△ABC内的任一点,直线AI,BI,CI分别交BC,CA,AB于 A′,B′,C′,则 (1) AI·BI·CI/AA′·BB′·CC′≤8/27,其中等号当且仅当△ABC为正三角形时成立 (2)当I位于以△ABC的中位线为边的△DEF内时,AI·BI·CI/AA′·BB′·CC′≥1/4,  相似文献   

7.
定理 正三角形各顶点到其外接圆上任一点的切线的距离之和为定值。 证明 如图,过正△ABC各顶点作其外接圆切线构成正△A′B′C′。设P为外  相似文献   

8.
定理 设P、Q为△ABC内两点 ,则AP·AQAB·AC +BP·BQBA·BC+CP·CQCA·CB≥ 1 . ( )等式当且仅当P、Q为△ABC等角共轭点 (即∠PAB=∠QAC ,∠PBC =∠QBA ,∠PCB =∠QCA)时成立 .证明 :如图 ,顺次以BC、CA、AB为对称轴作△PBC、△PCA、△PAB的对称图形 ,分别为△A′BC ,△B′CA ,△C′AB ,连结A′Q、B′Q、C′Q ,则易知 (以S△ 表示面积 ) :S△AC′Q+S△AB′Q=12 AC′·AQsin∠C′AQ +12 AQ·AB′sin∠B′AQ =12 AP·AQ(sin∠C′AQ +sin∠B′AQ)=12 AP·AQ·2sin ∠C′AQ +∠B′AQ2 ·c…  相似文献   

9.
擂台题(28):如图,△ABC在△A′B′C′内部,AB的延长线分别交 A’C、B’C’于 P;、PI*C的延长线分别交B’A’、B’C‘于P3、P4,BC的延长线分别交A’B’、A℃’于 P;、P.,AP;一AP.一BP—BP;一CP.一CP.一*PI上*A十人P..  相似文献   

10.
三角形的一个新性质   总被引:1,自引:1,他引:0  
命题 △ABC各角顶点与对边n(n>2)等分点的连线中,相邻两连线分别交于P、Q、R。则AP、BQ、CR三线共点于△ABC的重心。 证明:如图,设AP、BQ、CR分别交△ABC的三边于P′、Q′、R′。  相似文献   

11.
1993年德国有一赛题: 设△ABC三边AB=c,BC=a,CA=b,延长AB到A″,使BA″=a,反向延长到B′,使AB′=b,类似得A′,C′,B″,C″,如图,证明:S_(A′B″B′C″C′A″)/S_(△ABC)≥13。(*)  相似文献   

12.
王一帆 《中等数学》2012,(11):16-16,29
题1 已知△ABC的三内角〈A、〈B、〈C分别为π/、等π/7、4π/7,且三条角平分线分别与对边交于点A′、B′、C′.证明:△A′B′C′是等腰三角形.  相似文献   

13.
初中《几何》第二册(人教版)第49页有一道例题:已知,如图1,在△ABC 和△A′B′C′中,CD、C′D′分别是高,并且 AC=A′C′、CD= C′D′、∠ACB=∠A′C′B′,求证:△ABC≌△A′B′C′.证明过程详见课本.若把例题中条件∠ACB=∠A′C′B′换成 BC=B′C′,那么  相似文献   

14.
命题已知三棱锥P-ABC,Q是底面△ABC内的一点,S△BQC∶S△CQA∶S△AQB=α∶β∶γ,且α β γ=1.(ⅰ)一平面分别交PQ、PA、PB、PC于Q′、A′、B′、C′点,则PQPQ′=α.PPAA′ β.PPBB′ γ.PPCC′.(ⅱ)过P点的一个球面,分别交PQ、PA、PB、PC于Q′、A′、B′、C′点,则PQ′.PQ=α.PA′.PA β.PB′.PB γ.PC′.PC.为证明该命题,先介绍几个引理.引理1已知P为△ABC内一点,S△BPC∶S△CPA∶S△APB=m∶n∶r,延长AP交BC于M,则MBMC=nr,PAPM=n m r.引理2已知M为△ABC边BC上一点,且BMMC=mn,任作一直线…  相似文献   

15.
初中几何一册P155第24题“求证:两个锐角三角形有两边和其中一边上的高相等,那么这两个三角形全等”。学生几乎都能正确地证明这个命题,即首先证明Rt△ABD≌Rt△A′B′D′,从而∠B=∠B′,便易证△ABC≌△A′B′C′。可是直到顺利地结束证明过程,  相似文献   

16.
难题征解     
52.锐角△ABC中,AD、BE、CF是三条高,H为垂心,记△ABC、△HBC、△HCA、△HAB的外接圆半径之和为m,内接圆半径之和为n,求证m+n=△ABC周长。 (安徽怀中黄全福提供) 53 设△ABC的旁切圆半径和面积分别为r_a、r_b、r_c、△,△A′B′C′的三边和面积分别为a′、b′、c′、△′。证明或否定r_a/a′+r_b/b′+r_c/c′≥3 3~(1/2)/2 (△/△′)~(1/2)等号当且仅当△ABC与△A′B′C′均为正三角形时成  相似文献   

17.
271.△ABC的内切圆⊙O切BC、CA、AB于A′、B′、C′,过O点分别作△A′B′C′各边的平行线,它们在BC、CA、AB上截得的线段分别为EF、MN、PQ,试证: EF/BC+MN/CA+PQ/AB=1。证:如图1,连OC、QE、MF。由EN∥A′B′和OC⊥A′B′得OC⊥EN。但OC平分∠ECN,故ON=OE。同理,OM=OQ,所以,△OMN≌OQE,EQ(?)MN。同理得到FM(?)PQ。于是有△QBE∽△ABC∽△MFC。于是 MN/CA=QE/CA=BE/BC,  相似文献   

18.
第46届IMO预选题几何部分的第7题为: 在锐角△ABC中,点A、B、C在边BC、CA、AB上的投影分别为D、E、F,点A、B、C在边EF、FD、DE上的投影分别为P、Q、R.记△ABC、△PQR、△DEF的周长分别为P1、P2、P3.证明:[第一段]  相似文献   

19.
设A、B、C表示△ABC的三个内角,s、R、r分别表示△ABC的半周长、外接圆半径和内切圆半径,表示循环和.定理1在△ABC中,有33sincos2224sABR澹,(1)当且仅当△ABC为正三角形时等号成立.证明不失一般性,无妨设,ABC#由A、B、C为△ABC的三个内角,则,,(0,)2222ABCp.由于在区间(0,/2)p内  相似文献   

20.
每期一题     
题:如图,角形,尸、Q、试证△尸QR亦是正三角形 (芜湖市1983年高中数学竞赛试题)。 设ABC、A尸B,C产是二正三R分别是AA‘、BB‘、CC‘中点,图1 证法1(位似缩小加旋转)连A‘B、A‘C,E、F分别为其中点。连尸石、QE,pF,刀F,EF。利用三角形中位线定理,易知△pEF是△ABC的位似图形,A‘是位似中心,相似比为一含。 ,.’ pE=寺月B二一参月C==尸F, QE=士A/B‘二一吞一A‘C/二RF,又PE与PF交角为60。,EQ与FR交角为心 .’.以p为顶点,将△pOE旋转600,即与△PRF重合,故此二三角形全等。(或证匕尸EQ=匕PFR:如图2,延长OE交RF延长…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号