首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1.定义:如果一条直线l交圆锥曲线C于A、B两点,则称直线l为圆锥曲线C的割线. 2.公式:设A(x1,y1)、B(x2,y2)、AB的中点N(x0,y0). 椭圆:x2/a2+y2/b2=1的割线AB,则kAB=-b2x0/a2y0. 双曲线:x2/a2-y2/b2=1的割线AB,则KAB=  相似文献   

2.
受文献[1]的启发,本文给出圆锥曲线(椭圆、双曲线、抛物线)垂直于焦点所在对称轴的直线(简称“垂轴线”)的一个性质,并应用性质证明两组“姊妹”结论. 1 一组性质 性质1 已知椭圆Γ:x2/a2+y2/b2=1(a>b>0)与x轴交于A、B两点,直线l:x=m(| m |≠a)是垂直于x轴的一条定直线,P是椭圆Γ上异于A、B的任意一点,若直线PA交直线l于点M(m,y1),直线PB交直线l于点N(m,y2),则y1y2为定值b2/a2(a2-m2).  相似文献   

3.
二元二次齐方程Ax2 Bxy Cy2=0,当B2-4AC>0时所表示的曲线是过坐标原点的两条直线.此统一方程在求解直线与圆锥曲线的有关问题时有着巧妙的用途,其思想方法如下:若把圆锥曲线的弦所在直线方程ax by=1代入圆锥曲线方程,将其转化为关于x、y的二次齐次方程Ax2 Bxy Cy2=0,再化成C(y/x)2 B(y/x) A=0的形式,则弦的两个端点A(x1,y1)、B(x2,y2)与原点的两条连线的斜率k1=y1/x1,k2=y2/x2为其两根,从而利用韦达定理可使相关问题获解.下面举例加以说明.  相似文献   

4.
正圆锥曲线中有很多迷人的结论,本文给出圆锥曲线中一个基本模型中蕴含的优美结论.定理1:已知A,B是椭圆x2/a2+y2/b2=1(ab0)的左右顶点,点Q是直线l:x=x0(x0≠0,且|x0|≠a)上任意一点,直线AQ与椭圆的另一个交点为C,直线BQ与椭圆的另一个交点为D,直线AD与直线l的交点为R,则  相似文献   

5.
一、选择题1 .已知P1(x1,y1)、P2 (x2 ,y2 )分别是直线l上和l外的点 .若直线l的方程是 f(x ,y) =0 ,则方程f(x ,y) -f(x1,y1) -f(x2 ,y2 ) =0表示 (   ) .A .与l重合的直线B .过P1且与l垂直的直线C .过P2 且与l平行的直线D .不过P2 但与l平行的直线2 .已知三点A(-2 ,1 )、B(-3 ,-2 )、C(-1 ,-3 )和动直线l:y =kx ,当点A、B、C到直线l的距离的平方和最小时 ,下列结论中 ,正确的是 (   ) .A .点A在l上  B .点B在l上C .点C在l上  D .点A、B、C均不在l上3 .与圆 (x -a) 2 (y -b) 2 =4(a2 b2 )和圆 (x a) 2 (y b) 2 =4(a2 …  相似文献   

6.
文[1]给出了几个关于椭圆切线的典型性质,读后深受启发,本文对圆锥曲线进行了深入探究,又得到了圆锥曲线一组优美性质,现整理出来,供大家参考.性质1已知椭圆C:x2/a2+y2/b2=1(a>b>0),点P(m,0),E(a2/m,0)是x轴上两动点,其中|m|>a,过点P作直线l与椭圆C相交于A、B两点,则线段AE、BE与x轴所成的锐角相等.证明:如图1给出了m>a的情形,  相似文献   

7.
对于圆锥曲线中的定值问题 ,学生在解答时常常会感到无从下手 .这里介绍几种巧妙方法 ,供读者参考 .一、巧用韦达定理圆锥曲线方程是二元二次方程 ,增加一个条件即能消去一个变量 ,化为一元二次方程 ,从而可用韦达定理解决有关问题 .  【例 1】 已知直线l与x轴正向交于定点P(mP ,0 ) ,(m >0 ,m为常数 ) ,直线l与抛物线y2 =2Px(P >0 ,P为常数 )交于A(x1,y1) ,B(x2 ,y2 )两点 ,求证 :x1x2 ,y1y2 为定值 .证明 :设直线l的方程是x =ay+mP ,代入抛物线方程得 : y2 =2P(ay+mP)即 y2 -2Pay-2mP2 =0显然 ,由韦达定理得 :y1y2 =-2mP2 为定…  相似文献   

8.
在高二教材中的圆锥曲线一章中,有这样的结论: 如图1,若P(x0,y0)是椭圆x2/a2+y2/b2=1(a >b>0)上的一点,那么经过该点的椭圆的切线方程为x0x/a2+y0y/b2=1 问题:若点P(x0,Y0)在椭圆外部(或内部)时, 直线l:x0x/a2+y0y/b2=1是什么样的直线?与椭圆有怎样的关系?  相似文献   

9.
在高二解析几何教材的圆锥曲线一章中有这样的一个结论 :若P(x0 ,y0 )是圆 :x2 + y2 =r2 上的一点 ,那么过该点的圆的切线方程是x0 x + y0 y =r2 .(证明见教材 ) .问题 :若点P(x0 ,y0 )在圆x2 + y2 =r2 外(或圆内 )时 ,直线l:x0 x + y0 y =r2 是什么样的直线 ?与圆x2 + y2 =r2 有什么关系 ?不妨设点P(x0 ,y0 )不在坐标轴上 .直线l:x0 x + y0 y =r2 的斜率是kl =-x0y0(y0 ≠ 0 ) ,而kOP =y0x0(x0 ≠ 0 ) .∵klkOP =-1,∴直线l⊥OP .圆心O(0 ,0 )到直线x0 x + y0 y=r2 的距离为d =r2x20 + y20=r2|OP|.①由①可见 ,直线l与圆的关系由|…  相似文献   

10.
题 (Z009安徽理科20题第一小题)点P(x0,y0)在椭圆:x2/a2+y2/b2=1(a>b>0)上,x0=acos,y0=bsinβ(0<β<π/2).直线l2与直线l1:x0/a2x+y0/b2=1垂直,O为坐标原点.直线OP的倾斜角为a,直线l2的倾斜角为γ.  相似文献   

11.
经文[1]~[4]的不断研究,文[4]得到了圆锥曲线定点弦与定直线相关性的如下两个性质:性质1椭圆x2/a2+y2/b2=1(a>b>0)的过定点F(m,0)(m≠0,且m0,b>0)的过定点F(m,0)(m>a)的两条动弦AC、BD的两端点的连线AB、CD相交于点M,AD、BC相交于点N,则点M、N的轨迹都是定直线l:x=a2/m.性质2抛物线y2=2px(p>0)的过定点F(m,0)(m>0)的两条动弦AC、BD的两端点的连线AB、CD相交于点M,AD、BC相交于点N,则点M、N的轨迹都是定直线l:x=?m.本文将这两个性质推广到一般的情形,以更深刻揭示圆锥曲线的几何特征.定理过定点F(x0,y0)的两条动直线AC、BD分别与圆锥曲线相交于点A、B、C、D.设直线AB、CD相交于点M,AD、BC相交于点N,则(1)当圆锥曲线为椭圆22ax2+by2=1(a>b>0),且F(x0,y0)不为坐标原点时,点M、N的轨迹都是定直线l:xa02x+yb02y=1;(2)当圆锥曲线为双曲线22ax2?by2=1(a>0,b>0),且点F(x0,y0)不为坐标原点时,点M...  相似文献   

12.
文[1]证明:对于圆锥曲线C,过点P(x0,y0),任作直线l交圆锥曲线C于M,N两点,若圆锥曲线C在点M、N处切线的交点为Q,则点Q在一定直线上.  相似文献   

13.
本文介绍曲线Ax2+By2=C(AB≠0)的一条有趣性质,并以高考题为例说明其应用.1曲线的性质定理设曲线Ax2+By2=C(AB≠0)与直线P1P2相交于P1(x1,y1)、P2(x2,y2)两点,P为线段P1P2的中点,若直线P1P2、OP的斜率分别为k、m,则A+kmB=0.证明设P(x0,y0),则x1+x2=2x0,y1+y2=2y0,且xy00=1m.因为P1(x1,y1)、P2(x2,y2)两点在曲线上,所以Ax21+By12=C,Ax22+By22=C.两式相减并整理,得A(x1-x2)x0+B(y1-y2)y0=0,由题意知x1≠x2,则有y1-y2x1-x2=-AByx00,即k=-mAB,所以A+kmB=0.2性质的应用2·1求圆锥曲线的离心率例1(2005年全国高考题)已知椭圆的中…  相似文献   

14.
笔者近日在学习和研究圆锥曲线时,发现圆锥曲线与其切线有关的一个优美的性质,现表述如下,以期与同仁分享. 性质1 已知A,B是椭圆C:x2/a2+y2/b2=1(a>b>0)上不同的两点(不同时在坐标轴上,或kOA·kOB≠-b2/a2),O为椭圆C的中心,椭圆C在点A,B处的切线分别与直线OB,OA相交于P,Q两点.则AB∥PQ. 证明:如图1,设A(x1,y1),B(x2,y2).则切线AP,BQ的方程分别为:x1x/a2+y1y/b2=1,x2x/a2+y2y/b2=1.直线OA,OB的方程分别为:y=y1/x1x,y=y2/x2x由方程组{x2x/a2+y2y/b2=1 y=y1/x1x,解得点Q的坐标为xQ=a2+b2+x1/b2x1x2+a2y1y2,yQ=a2+b2+y1/b2x1x2+a2y1y2.  相似文献   

15.
若点P(x1,y1),Q(x2,y2)在直线l:f(x,y)=0的两侧,则f(x1,y1)·f(x2,y2)<0,反之也成立.利用这个性质可巧妙解决一类直线斜率的范围问题,现举例说明之.例1已知直线l过点P(-1,2),且与以A(-2,-3),B(3,0)为端点的线段相交,求直线l的斜率k的取值范围.解析原题意等价于点A、B在直线l的两侧或其中一点在直线l上.  相似文献   

16.
设直线l经过抛物线C:y2=2px(p>0)的焦点F,且与抛物线C交于A、B两点(直线AB的倾斜角为α),设A (x1,y1),B(x2,y2),O为坐标原点,准线方程为:x=-p/2,则关于抛物线C的焦点弦有以下九条常用的性质:(1)2x1x2=p/4;(2)y1y2=-p2.  相似文献   

17.
<正>在圆锥曲线的考查中,我们经常会遇到这样的一类问题:圆锥曲线上存在两点关于某条直线对称,求参数的取值范围。这类问题的解法是:设P(x_1,y_1),Q(x_2,y_2)是圆锥曲线上关于直线y=kx+b(k≠0)对称的两点,PQ的中点为M(x_0,y_0),则PQ的方程为y=-1/kx+m,利用点差法、中点坐标公式求得中点坐标,再根据中点与圆锥曲线的位置关系求解。例1已知抛物线C:y2=x与直线l:  相似文献   

18.
1方法回顾提炼文[1]中提炼出一种解决"直线与圆锥曲线相交弦"有关问题的行之有效的特殊方法——构造"关于y/x的二次方程".其具体方法如下:若直线l与圆锥曲线C相交于不同两点P(x_1,y_1)和Q(x_2,y_2),当求解与k_(OP)、k_(OQ)相关的问题时,可以设直线l的方程为y =kx 6,当b≠0时,可将其化为(y-kx)/b=1,  相似文献   

19.
正定理1已知AB是圆C:2 2 2x+y=r的直径,直线l与x轴垂直,过圆C上任意一点P(不同于A,B)作直线PA与PB分别交直线l于M,N两A P O B Q N M x y点,记线段MN的中点为Q,则直线PQ与圆相切.证明设点0 0P(x,y),直线l为x=m,  相似文献   

20.
下面先介绍一个结论:直线l的方程为Ax By C=0(A、B不同时为零)(1)若M1(x1,y1)、M2(x2,y2)为直线l异侧的任意两点,则(Ax1 By1 C)(Ax2 By2 C)<0.(2)若M1(x1,y1)、M2(x2,y2)为直线l同侧的任意两点则(Ax1 By1 C)(Ax2 By2 C)>0.证明略.应用举例:例1若点A(1,3)和B(-4,-2)在直线2x y m=0的两侧,求m的取值范围.解设f(x,y)=2x y m.∵A(1,3)和B(-4,-2)在直线2x y m=0的两侧,∴f(1,3).f(-4,-2)<0,∴(2×1 3 m)[2×(-4) (-2) m]<0,∴-5相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号