首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1 数学归纳法所谓“数学归纳法”是证明一个与自然数n有关的数学命题时 ,所采取的一种证明方法。其具体步骤 :( 1)验证n取第一个值n0 时 (如n0 =1、2或 3)命题成立 ;( 2 )假设n =k(k∈N且k≥n0 )时结论正确 ,并且在此假设条件下 ,当n =k +1时结论也正确。则原命题正确。这种方法我们称之为数学归纳法。如证明等差数列的通项公式an=a1+(n - 1)d证明 :( 1)当n =1时左边 =a1右边 =a1+( 1- 1)d =a1等式成立( 2 )假设当n =k(k∈N且k≥ 1)时an=a1+(k - 1)d则当n =k +1时ak +1=ak+d =a1+(k - 1)d +d=…  相似文献   

2.
20 0 2年中国数学奥林匹克 (冬令营 )第六题 :给定c∈ 12 ,1 .求最小常数M ,使对任意整数n≥2及实数 0 <a1≤a2 ≤…≤an,只要满足1n∑nk=1kak =c∑nk=1ak,总有 ∑nk=1ak ≤M∑mk=1ak,其中m =[cn]表示不超过cn的最大整数 .把该题的已知等式变形后 ,对等式的左右两边分别运用切比雪夫不等式及等号成立的充要条件 ,能得到问题的一个较简明解法 .解 :所求最小常数M =11 -c.∵m =[cn],且c∈ 12 ,1 ,∴cn -1 <m≤cn <n .∵ 1n∑nk=1kak=c∑nk =1ak,∴ ∑mk=1c-kn ak=∑nk=m + …  相似文献   

3.
关于自然数的命题大都可以用数学归纳法来证明 ,其中的核心问题是如何恰当地运用归纳假设 ,证明n =k+ 1时命题的正确性 ,即由n=k时成立的命题过渡到n =k+ 1时也成立 ,这也正是证题的难点所在 .所以在具体证题时应强化目标意识 ,运用技巧进行有效的过渡和转化 ,达到证题的目标 .本文就此问题谈谈几种常用的过渡策略 .1 思前想后找联系我们既要盯着目标 ,即n =k+ 1时的结论 ,也要顾及n =k时的假设 ,打通他们之间的内在联系后就容易过渡了 .例 1 已知 f(n) =1+ 12 + 13+… + 1n  (n≥ 2且n∈N) ,求证 :n+ f(1) +… + f(…  相似文献   

4.
对于数列型恒等式和不等式的证明 ,通常都采用数学归纳法 ,但如果用构造数列的方法来证明 ,往往更简洁 ,并且也容易被学生所接受 .1 “a1 a2 a3 … an ≤Sn(或≥Sn)”型对这种类型的恒等式和不等式 ,可以构造数列{bk} ,使得bk =Sk-Sk- 1(规定S0 =0 ) ,这样 ,b1 b2 b3 … bn =(S1-S0 ) (S2 -S1) (S3-S2 ) … (Sn-Sn- 1) =Sn.对k∈N ,如果有ak ≤bk(或ak ≥bk) ,那么a1 a2 a3 … an ≤Sn(或≥Sn)成立 .例 1  (1993年全国高考题改编 )证明 8· 112 · 32 8· 232 · 52 …  相似文献   

5.
数学归纳法证不等式常用到放大或缩小的策略,通过放缩把命题强化.由于更强的命题提供更强的归纳假设,所以强化以后的命题更容易用数学归纳法证明.如何放缩使命题强化,具体问题要具体分析.本文给出如下3种常用的方法,供参考.例1求证:31!+42!+53!+…+n(n+2)!<21(n∈N+)分析:设n=k时有31!+42!+…+k(k+2)!<21,则n=k+1时,31!+…+(k+k2)!+k+1(k+3)!<21+(kk++31)!,无法判断n=k+1时命题是否成立,思路受阻.然而31!+42!+…+(n+n2)!<23!+43!+…+(nn++21)!=3-13!+44-!1+…+(n(+n+2)2)-!1=12!-31!+31!-41!+…+(n+11)!-1(n+2)!=21!-(n+12)!=12-(n+12)!<21…  相似文献   

6.
对于一边是常数的数列不等式,在用数学归纳法直接证明时,归纳过渡往往有一定的困难,若利用不等式的传递性、可加性等性质,通过强化命题,放缩常数等技巧,就可顺利完成归纳过渡,下面举例说明.  相似文献   

7.
本文介绍一个结构简单但应用广泛的不等式。定理 设a >0 ,b >0 ,n∈N ,则an + 1/bn≥ (n + 1 )a -nb ( )当且仅当a =b时 ,等号成立。证明  ( ) an + 1≥ (n + 1 )abn-nbn + 1 an + 1+nbn+ 1-(n + 1 )abn≥ 0 (an+ 1-bn + 1) + (n + 1 )bn·(b -a)≥ 0 (a -b) [an+an - 1b +an- 2 b2 +… +abn- 1+bn-(n + 1 )bn]≥ 0①若a >b >0 ,则an+an - 1b +an - 2 b2 +… +abn - 1+bn-(n + 1 )bn>(n + 1 )bn-(n + 1 )bn=0 ,从而①式成立。若 0 <a <b,则a…  相似文献   

8.
证明与自然数有关的不等式问题 ,数学归纳法是首选 ,但完成 p(k+ 1 )的证明却是难点 .笔者收集了部分以证明不等式为出发点的高考题 ,发现它们均可以用数学归纳法完成 ,而且用分析法完成 p(k+ 1 )的证明 ,方法朴实简单 ,易于掌握 ,堪称通法 .例 1  (1 992年“三南”高考题 )求证 :1 + 12 + 13 +… + 1n<2n(n∈N ) .证明  (1 )当n=1时 ,左边 =1 <2 =右边 .不等式成立 .(2 )假设当n=k时 ,不等式成立 ,即1 + 12 + 13 +… + 1k <2 k ,那么  1 + 12 + 13 +… + 1k+ 1k + 1  <2 k+ 1k + 1 .现在只需证明2k+ 1k+ 1 <2 k+ 1…  相似文献   

9.
培养学生的数学意识和学会数学的应用 ,是中学物理教学的任务之一 .中学物理中的极值问题是融物理与数学、知识与能力为一体的 ,综合性强 ,技巧性高 ,难度较大的一类专题 .这类问题在高考中也屡见不鲜 .本文就一个函数最值模型谈谈它在物理问题中的应用 .1 求函数y=sin2 θ·cosθ( 0 <θ <π/2 )的最值在数学中学习过“任意个正数的算术平均数不小于它们的几何平均数 .”即当a1、a2 、…an 均为正数时 ,不等式 1n(a1+a2 +… +an)≥ na1·a2 …an恒成立 ,当且仅当a1=a2 =… =an 时取等号 ,这时a1·a2 ·…·a…  相似文献   

10.
不完全归纳法是通过对一类事物中的部分个体的研究 ,推断出这一类事物的一般性结论的推理方法 .不完全归纳法的过程通常是 :选取个体———观察分析———推测结论 .不完全归纳法对于发现问题的结论和探索解题思路有独到的作用 ,对于解选择题和填空题十分适用 ,对于某些与自然数有关的解答题也可帮助探索 ,但要用数学归纳法证明 .下面通过例题来说明不完全归纳法的应用 .一、利用不完全归纳法解选择题例 1 已知数列 {an}满足an+1 =an -an- 1 (n≥ 2 ) ,a1 =a,a2 =b,记Sn =a1 +a2+… +an,则下列结论正确的是 (   )(A)…  相似文献   

11.
题目 设a0 为常数 ,且an =3n-1 - 2an-1 (n ∈N+ )(Ⅰ )证明对任意n ≥ 1,an =15[3n+ ( - 1) n-1 · 2 n] + ( - 1) n· 2 n·a0 ;(Ⅱ )假设对于任意n ≥ 1有an >an-1 ,求a0 的取值范围试题是根据新教材数列一章中的一道习题设计的 ,情境新颖 ,背景公平 ,是一道具有一定创新能力的试题 .下面利用递推关系 ,给出如下解法 :Ⅰ )由an =3n-1 - 2an-1 ,所以an+λ· 3n =3n-1 +λ· 3n - 2an-1 =-2 (an-1 - 3λ + 12 · 3n-1 )要使 {an +λ· 3n}成等比数列 ,必须且只须λ=- 3λ+ 12 所以λ =- 15.即 {…  相似文献   

12.
在数学归纳法的教学中 ,若直接采用如下的归纳公理 :自然数集合N的任何一个子集 ,若含有数 1 (元之素 ) ,且在含有任何一个数a的同时含有它的后继数a′,则它与N相同 .然后再给出数学归纳法的证题法则 ,学生是难以理解与接受的 .所以在几乎所有的关于数学归纳法的教材中 ,都是采用直接给出证明法则的形式 ,即 :若证明一个关于自然数的命题 ,我们先证明它对n =n0 (例如n0=1 )时成立 ,然后假设n =k时命题成立 ,再证明n =k +1时命题也成立 ,就可断定这个命题对于取第一个值n0 后面的所有自然数也都成立 .但这种叙述正如G·波利亚所…  相似文献   

13.
对于以下不等式问题 ,本文将它们作统一的推广 ,从而较好地揭示了问题的实质和它们相互间的联系 .问题 1[1] (第 2 6届独联体数学奥林匹克试题 )证明 :对任意实数a>1,b>1,有不等式 a2b- 1+b2 a- 1≥ 8.问题 2 [2 ] 设a1,a2 ,… ,an 是大于 1的实数 ,且k≥ 2 ,k∈N ,则有不等式ak1ai1- 1+ ak2ai2 - 1+… + aknain - 1≥ nkk(k- 1) k- 1,(其中i1,i2 ,… ,in 是 1,2 ,… ,n的一个排列 )问题 3[3]   (《数学通报》2 0 0 0年第 11期数学问题 12 84 )已知实数a >1,b>1,c>1,求证 :a3b2 - 1+ b3c2 - 1…  相似文献   

14.
我们知道 ,对于一般的n阶方阵A ,其特征值不一定能求出来 ,本文将介绍一类特殊矩阵的特征值的求法 .一、引理与定理引理 若A(t) =(aij(t) ) n×n,且Limtt0aij(t) =aij(i,j =1,2 ,… ,n) ,记A= (aij) n×n,则Limtt0 A(t) = A .证 对行列式的阶数n用数学归纳法当n =1时命题显然成立 .假设对n 1时命题成立 ,现证对n命题也成立 .事实上 ,由行列式的展开定理[1] ,[2 ] 及归纳假设 ,Limtt0 A(t) =Limtt0 nk=1a1k(t) . ( 1) 1+kM1k(t) = nk=1a1k.( 1) 1+kM1…  相似文献   

15.
文 [1]有这样两个不等式 :若a ,b∈R+,a +b=1,则43 ≤ 1a + 1+ 1b + 1<32 ,(1)32 <1a2 + 1+ 1b2 + 1≤ 85 . (2 )文 [2 ]建立了如下两个新不等式 :若a ,b∈R+,a +b=1,则32 <1a3 + 1+ 1b3 + 1≤ 169,(3 )1an + 1+ 1bn + 1>32 . (4 )且在文末提出如下猜想 :若a ,b∈R+,a +b=1;n∈N+,n≥ 2 ,则1an + 1+ 1bn + 1≤ 2 n+12 n + 1. (5 )研究发现 ,文 [2 ]猜想 (5 )式成立 ,且(4 )、(5 )二式中的条件“n∈N+,n≥ 2”均可弱化为“n∈R+,n≥ 2” ,这就是以下两个更好的不等式 :定理 1 若a ,b∈R+,a +b…  相似文献   

16.
从N=k到N=k+1     
应用数学归纳法时,同学们的主要困难是怎样由“假设n=k时结论正确,证明当n=k+1时结论正确”。其中尤其对不等式问题、几何问题更感困难,为此介绍一些常用方法供参考。 1 对于用数学等式、不等式表示的命题,一般情况是先给归纳假设成立的式子的两端部加上或乘以第k+1项,使式子的一端先符合命题的预定形式(即n=k+1时命题应有的形式),然后变化另一端使之也成为命题的预定形式。  相似文献   

17.
一类与n有关的递推不等式,在用数学归纳法直接证明时,归纳过度往往有一定的困难,或者根本证不出来,此时若能强化命题或增加起点或两次运用归纳假设或利用n=n0的结论或证明其等价命题,就可以顺利地完成归纳过渡,下面举例说明。  相似文献   

18.
利用数学归纳法来证明某些与自然数n有关的不等式 ,证k到 (k 1)这一过程是许多同学感到困难的一步 .为此 ,笔者介绍一种“凑配分裂”的转化策略 ,以解决这一难点 .1 凑配从归纳假设n=k的不等式出发 ,凑配出待证n=k 1时的不等式的某一端 ,再结合不等式性质将问题有效转化 .例 1  (《代数》课本下册 12 3页例 5)已知x >- 1,且x≠ 0 ,n ∈N ,且n≥ 2 ,求证 ( 1 x) n >1 nx .证明  (i)当n=2时 ,左边 =( 1 x) 2 =1 2x x2 ,右边 =1 2x ,因为x2 >0 ,所以原不等式成立 .(ii)假设不等式当n =k(k≥ 2 )时成立 ,就是( …  相似文献   

19.
在用数学归纳法证明命题时,归纳过渡是证题的关键。本文介绍用数学归纳法证题时的技巧与转化策略。 一、强化命题结论 在从κ到(κ 1)的归纳过渡中,如果变形有困难,但把命题结论加强以后,归纳假设也随之加强,这样可尝试证明强化的命题。  相似文献   

20.
《中等数学》2 0 0 2年第 2期数学奥林匹克问题高 1 1 0 :设a、b、c∈R+ .试证 :ab2 + bc2 + ca2 ≥ 1a+ 1b+ 1c.①本文推广不等式① ,得到如下命题 设x1,x2 ,… ,xn ∈R+ ,n >1 ,αβ>0 .则xα1xβ2+ xα2xβ3+… + xαn - 1xβn+ xαnxβ1≥xα - β1+xα- β2 +… +xα - βn ,②等号当且仅当x1=x2 =… =xn 时成立 .证明 :(用数学归纳法 )( 1 )当n =2时 ,式②左 -右 =xα1xβ2+ xα2xβ1-xα - β1-xα- β2=(xα1-xα2 ) (xβ1-xβ2 )xβ1xβ2.根据x1>0 ,x2 >0 ,αβ >0及幂函数…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号