首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an adaptive distributed control protocol is proposed for non-affine multi-agent system with nonlinear dead-zone input and state constraints under the condition of directed topology. In order to overcome the difficulties caused by non-affine terms in the system, the nonlinear dynamics system is transformed. Then, the neural network technology is introduced to approximate the unknown non-affine terms for the obtained system. State constraints and dead-zone input are common system problems. In order to solve these problems, the barrier Lyapunov function is introduced in this paper. According to the barrier Lyapunov function and backstepping method, an adaptive distributed controller is designed, so that state variables do not violate constraint bounds and the system is not affected by dead-zone input. By Lyapunov stability theory, it is proved that the signals of each follower are cooperative semi-global uniform ultimate boundedness (CSUUB), and the outputs of the followers track the output of the leader. Simulation example is given to demonstrate the effectiveness of the proposed method.  相似文献   

2.
A backstepping-based adaptive neural network decentralized stabilization approach is presented for the expanding construction of a class of nonlinear large scale interconnected systems in this paper. The expanding construction of large scale interconnected systems is to add some new subsystems into the original system during the operation of the original system. For stabilization of the expanding system, it is more realistic to keep the decentralized control laws of the original subsystems unchanged. And the decentralized control laws of the new subsystems must be designed to stabilize both itself and the resultant large scale system. In this paper, neural networks are used to approximate the unknown nonlinear functions in the new subsystems and the unknown nonlinear interconnection functions. The decentralized control laws and the parameter adaptive laws of the new subsystems are designed by using backstepping technique for the expanding construction of the large-scale interconnected system. Based on Lyapunov stability theory, the uniform and ultimate boundedness of all signals in the closed-loop system is proved. Two illustrative examples show the feasibility of the presented approach.  相似文献   

3.
In this paper, an adaptive finite-time funnel control for non-affine strict-feedback nonlinear systems preceded by unknown non-smooth input nonlinearities is proposed. The input nonlinearities include backlash-like hysteresis and dead-zone. Unknown nonlinear functions are handled using fuzzy logic systems (FLS), based on the universal approximation theorem. An improved funnel error surface is utilized to guarantee the steady-state and transient predetermined performances while the differentiability problem in the controller design is averted. Using the Lyapunov approach, all the adaptive laws are extracted. In addition, an adaptive continuous robust term is added to the control input to relax the assumption of knowing the bounds of uncertainties. All the signals in the closed-loop system are shown to be semi-globally practically finite-time bounded with predetermined performance for output tracking error. Finally, comparative numerical and practical examples are provided to authenticate the efficacy and applicability of the proposed scheme.  相似文献   

4.
In this paper, the tracking control problem of a class of uncertain strict-feedback nonlinear systems with unknown control direction and unknown actuator fault is studied. By using the neural network control approach and dynamic surface control technique, an adaptive neural network dynamic surface control law is designed. Based on the neural network approximator, the uncertain nonlinear dynamics are approximated. Using the dynamic surface control technique, the complexity explosion problems in the design of virtual control laws and adaptive updating laws can be overcome. Moreover, to solve the unknown control direction and unknown actuator fault problems, a type of Nussbaum gain function is incorporated into the recursive design of dynamic surface control. Based on the designed adaptive control law, it can be confirmed that all of the signals in the closed-loop system are semi-global bounded, and the convergence of the tracking error to the specified small neighborhood of the origin could be ensured by adjusting the designing parameters. Finally, two examples are provided to demonstrate the effectiveness of the proposed adaptive control law.  相似文献   

5.
This paper focuses on an adaptive fuzzy fixed-time control problem for stochastic nonstrict nonlinear systems with unknown dead-zones by using dynamic surface control (DSC) technology. Fuzzy logic systems (FLSs) and DSC technology are used to approximate nonlinear functions and reduce the computational complexity, respectively. At the same time, the influence of the dead-zone disturbance is offset by transforming the dead-zone model into the nonlinear model that can be approximated by the FLSs. Then, based on the fixed-time stability theory, an adaptive fuzzy fixed-time tracking control strategy is proposed, which can ensure semi-global practical fixed-time stability of the system and the tracking error converging to a small neighborhood near the origin. Finally, two simulation examples are given to prove the effectiveness of the proposed control strategy.  相似文献   

6.
This paper addresses a novel fuzzy adaptive control method for a class of uncertain nonlinear multi-input multi-output (MIMO) systems with unknown dead-zone outputs and immeasurable states. The immeasurable states under consideration are estimated by designing a fuzzy state observer. Based on the properties of the Nussbaum-type function, the difficulty of fuzzy adaptive control caused by the unknown dead zone outputs of MIMO nonlinear uncertain systems is overcome. The presented design algorithm not only guarantees that all the signals in the closed-loop system are semi-globally uniformly ultimately bounded, but also ensures that the outputs of the MIMO system converge to a small neighborhood of the desired outputs. The main contributions of this research lie in that the developed MIMO systems are more general, and an efficient design method of output-feedback controller is investigated for the studied MIMO systems, which is more applicable in practical environment. Simulation results illustrate the effectiveness of the proposed scheme.  相似文献   

7.
In this paper, a new framework of the robust adaptive neural control for nonlinear switched stochastic systems is established in the presence of external disturbances and system uncertainties. In the existing works, the design of robust adaptive control laws for nonlinear switched systems mainly relies on the average dwell time method, while the design and analysis based on the model-dependent average dwell time (MDADT) method remains a challenge. An improved MDADT method is developed for the first time, which greatly relaxes the requirements of Lyapunov functions of any two subsystems. Benefiting from the improved MDADT, a switched disturbance observer for discontinuous disturbances is proposed, which realizes the real-time gain adjustment. For known and unknown piecewise continuous nonlinear functions, a processing method based on the tracking differentiator and the neural network is proposed, which skillfully guarantees the continuity of the control law. The theoretical proof shows that the semiglobal uniform ultimate boundedness of all closed-loop signals can be guaranteed under switching signals with MDADT property, and simulation results of the longitudinal maneuvering control at high angle of attack are given to further illustrate the effectiveness of the proposed framework.  相似文献   

8.
Decentralized adaptive neural backstepping control scheme is developed for uncertain high-order stochastic nonlinear systems with unknown interconnected nonlinearity and output constraints. For the control of high-order nonlinear interconnected systems, it is assumed that nonlinear system functions are unknown. It is for the first time to control stochastic nonlinear high-order systems with output constraints. Firstly, by constructing barrier Lyapunov functions, output constraints are handled. Secondly, at each recursive step, only one adaptive parameter is updated to overcome over-parameterization problems, and RBF neural networks are used to identify unknown nonlinear functions so that the difficulties caused by completely unknown system functions and stochastic disturbances are tackled. Finally, based on the Lyapunov stability method, the decentralized adaptive control scheme via neural networks approximator is proposed, ultimately reducing the number of learning parameters. It is shown that the designed controller can guarantee all the signals of the resulting closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB), and the tracking errors for each subsystem are driven to a small neighborhood of zero. The simulation studies are performed to verify the effectiveness of the proposed control strategy.  相似文献   

9.
In this paper, a novel adaptive control scheme is investigated based on the backstepping design for a class of stochastic nonlinear systems with unmodeled dynamics and time-varying state delays. The radial basis function neural networks are used to approximate the unknown nonlinear functions obtained by using Ito differential formula and Young?s inequality. The unknown time-varying delays and the unmodeled dynamics are dealt with by constructing appropriate Lyapunov–Krasovskii functions and introducing available dynamic signal. It is proved that all signals in the closed-loop system are bounded in probability and the error signals are semi-globally uniformly ultimately bounded (SGUUB) in mean square or the sense of four-moment. Simulation results illustrate the effectiveness of the proposed design.  相似文献   

10.
The objective of this article is to present an adaptive neural inverse optimal consensus tracking control for nonlinear multi-agent systems (MASs) with unmeasurable states. In the control process, firstly, to approximate the unknown state, a new observer is created which includes the outputs of other agents and their estimated information. The neural network is used to reckon the uncertain nonlinear dynamic systems. Based on a new inverse optimal method and the construction of tuning functions, an adaptive neural inverse optimal consensus tracking controller is proposed, which does not depend on the auxiliary system, thus greatly reducing the computational load. The developed scheme not only insures that all signals of the system are cooperatively semiglobally uniformly ultimately bounded (CSUUB), but also realizes optimal control of all signals. Eventually, two simulations provide the effectiveness of the proposed scheme.  相似文献   

11.
The main contribution of this paper is to develop an adaptive output-feedback control approach for a class of uncertain nonlinear systems with unknown time-varying delays in the pure-feedback form. Both the non-affine nonlinear functions and the unknown time-varying delayed functions related to all state variables are considered. These conditions make the controller design difficult and challenging because the output-feedback controller should be designed using only the output information. In order to overcome these conditions, we design an observer-based adaptive dynamic surface controller where the time-delay effects are compensated by using appropriate Lyapunov–Krasovskii functionals and the function approximation technique using neural networks. A first-order filter is added to the control input to avoid the algebraic loop problem caused by the non-affine structure. It is proved that all the signals in the closed-loop system are semi-globally uniformly bounded and the tracking error converges to an adjustable neighborhood of the origin.  相似文献   

12.
This paper considers the topic of adaptive leader-following fault-tolerant tracking control for a class of non-strict feedback nonlinear multi-agent systems with or without state constraints in a unified solution. Through the use of certain transformation techniques, the original constraint system is recast as a new completely unconstrained system. Compared with the existing results, the limitation that the constraint functions need upper bound is relaxed. By employing radial basis function neural networks (RBFNNs) to approximate the unknown functions. A novel adaptive fault-tolerant consensus tracking control (CTC) manner is raised with command filtered backstepping design. Then, through the Lyapunov stability analysis, the proposed scheme can ensure all signals in the closed-loop system are cooperative semi-globally uniformly ultimately bounded (SGUUB). Finally, simulation example confirms the efficiency of the proposed method.  相似文献   

13.
In this paper, we focus on an output secure consensus control issue for nonlinear multi-agent systems (MASs) under sensor and actuator attacks. Followers in an MAS are in strict-feedback form with unknown control directions and unknown dead-zone input, where both sensors and nonlinear characteristics of dead-zone in actuators are paralyzed by malicious attacks. To deal with sensor attacks, uncertain dynamics in individual follower are separated by a separation theorem, and estimation parameters are introduced for compensating and mitigating the influence from adversaries. The influence from actuator attacks are treated as a total displacement in a dead-zone nonlinearity, and an upper bound, as well as its estimation, is introduced for this displacement. The dead-zone nonlinearity, sensor attacks and unknown control gains are gathered together regarded as composite unknown control directions, and Nussbaum functions are utilized to address the issue of unknown control directions. A distributed secure consensus control strategy is thus developed recursively for each follower in the framework of surface control method. Theoretically, the stability of the closed-loop MAS is analyzed, and it is proved that the MAS achieves output consensus in spite of nonlinear dynamics and malicious attacks. Finally, theoretical results are verified via a numerical example and a group of electromechanical systems.  相似文献   

14.
《Journal of The Franklin Institute》2021,358(18):10029-10051
This paper is concerned with the problem of generating stable limit cycles for a class of nonlinear sandwich systems with the sandwiched dead-zone nonlinearity. In this study, the considered sandwich systems are restricted to the potential problems of non-symmetric input saturation nonlinearity and unknown parameters. In this regard, based on the set stabilization approach and the shape of the desired limit cycle, an adaptive state feedback controller is constructed by using the backstepping technique in such a way that forces the system's output to oscillate with the wanted amplitude and frequency. Besides, to estimate the value of unknown parameters, the adaptive laws are extracted and the problem of the explosion of complexity in the traditional backstepping approach is solved via an effective differentiator. The Lyapunov stability analysis proves that all signals of the closed-loop system keep bounded. Finally, the simulation results of a practical example are provided to demonstrate the effectiveness of the proposed method.  相似文献   

15.
This paper focuses on the problem of adaptive output feedback control for a class of uncertain nonlinear systems with input delay and disturbances. Radial basis function neural networks (NNs) are employed to approximate the unknown functions and an NN observer is constructed to estimate the unmeasurable system states. Moreover, an auxiliary system is introduced to compensate for the effect of input delay. With the aid of the backstepping technique and Lyapunov stability theorem, an adaptive NN output feedback controller is designed which can guarantee the boundedness of all the signals in the closed-loop systems. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.  相似文献   

16.
In this paper, global practical tracking is investigated via output feedback for a class of uncertain nonlinear systems subject to unknown dead-zone input. The nonlinear systems under consideration allow more general growth restriction, where the growth rate includes unknown constant and output polynomial function. Without the precise priori knowledge of dead-zone characteristic, an input-driven observer is designed by introducing a novel dynamic gain. Based on non-separation principle, a universal adaptive output feedback controller is proposed by combining dynamic high-gain scaling approach with backstepping method. The controller proposed guarantees that the closed-loop output can track any smooth and bounded reference signal by any small pre-given tracking error, while all closed-loop signals are globally bounded. Finally, simulation examples are given to illustrate the effectiveness of our dynamic output feedback control scheme.  相似文献   

17.
This paper presents a minimal-neural-networks-based design approach for the decentralized output-feedback tracking of uncertain interconnected strict-feedback nonlinear systems with unknown time-varying delayed interactions unmatched in control inputs. Compared with existing approximation-based decentralized output-feedback designs using multiple neural networks for each subsystem in lower triangular form, the main contribution of this paper is to provide a new recursive backstepping strategy for a local memoryless output-feedback controller design using only one neural network for each subsystem regardless of the order of subsystems, unmeasurable states, and unknown unmatched and delayed nonlinear interactions. In the proposed strategy, error surfaces are designed using unmeasurable states instead of measurable states and virtual controllers are regarded as intermediate signals for designing a local control law at the last step. Using Lyapunov stability theorem and the performance function technique, it is shown that all signals of the total controlled closed-loop system are bounded and the transient and steady-state performance bounds of local tracking errors can be preselected by adjusting design parameters independent of delayed interactions.  相似文献   

18.
In this paper, an adaptive neural control scheme is proposed for a class of unknown nonlinear systems with unknown sensor hysteresis. The radial basis function neural networks are employed to approximate the unknown nonlinearities and the backstepping technique is implemented to construct controllers. The difficulty of the control design lies in that the genuine states of the system are not available for feedback, which is caused by sensor hysteresis. The proposed control scheme eventually ensures the practical finite-time stability of the closed-loop system, which is proved by the Lyapunov theory. A numerical simulation example is included to verify the effectiveness of the developed approach.  相似文献   

19.
This paper considers a class of nonlinear fractional-order multi-agent systems (FOMASs) with time-varying delay and unknown dynamics, and a new robust adaptive control technique is proposed for cooperative control. The unknown nonlinearities of the systems are online approximated by the introduced recurrent general type-2 fuzzy neural network (RGT2FNN). The unknown nonlinear functions are estimated, simultaneously with the control process. In other words, at each sample time the parameters of the proposed RGT2FNNs are updated and then the control signals are generated. In addition to the unknown dynamics, the orders of the fractional systems are also supposed to be unknown. The biogeography-based optimization algorithm (BBO) is extended to estimate the unknown parameters of RGT2FNN and fractional-orders. A LMI based compensator is introduced to guarantee the robustness of the proposed control system. The excellent performance and effectiveness of the suggested method is verified by several simulation examples and it is compared with the other methods. It is confirmed that the introduced cooperative controller results in a desirable performance in the presence of time-varying delay, unknown dynamics, and unknown fractional-orders.  相似文献   

20.
This paper is devoted to adaptive neural network control issue for a class of nonstrict-feedback uncertain systems with input delay and asymmetric time-varying state constraints. State-related external disturbances are involved into the system, and the upper bounds of disturbances are assumed as functions of state variables instead of constants. Additionally, during the approximations of unknown functions by neural networks, the online computation burdens are declined sharply, since the norms of neural network weight vectors are only estimated. In the process of dealing with input delay, an auxiliary function is applied such that the conditions for time delay are more general than the ones in existing literature. A novel adaptive neural network controller is designed by constructing the asymmetric barrier Lyapunov function, which guarantees that the output of system has a good tracking performance and the state variables never violate the asymmetric time-varying constraints. Finally, numerical simulations are presented to verify the proposed adaptive control scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号