首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
圆锥曲线的一个奇妙性质   总被引:1,自引:0,他引:1  
熟知关于抛物线的一个命题 :过原点O任作抛物线y2 =2px的两条互相垂直的弦OP、OQ ,则直线PQ必过定点M1(2p ,0 )。对于抛物线上的任一点M(x0 ,y0 )来说是否也有同样的性质 ?探求如下 :设M(y202p,y0 ) ,P(y212p,y1) ,Q(y222p,y2 ) ,MP⊥MQ。则KPQ=2py1+y2,直线PQ的方程为(y1+y2 ) (y -y1) =2p(x - y212p) ,即  2px - (y1+y2 )y +y1y2 =0 (1)又由MP⊥MQ ,kMP·kMQ=- 1,得  2py0 +y1· 2py1+y0=- 1∴ y1y2 =-y0 (y1+y2 ) - 2px0 - 4p2 (2 )把 (2 )代入 (1)得…  相似文献   

2.
定理 过抛物线y2 =2px(p >0 )对称轴上一定点M(x0 ,0 )作一条直线交抛物线于A、B两点 ,若两交点的纵坐标为y1、y2 ,则y1y2 =- 2px0 (定值 ) .证明 设直线AB方程为x=my+x0 ,代入抛物线方程y2 =2px ,得y2 2mpy - 2px2 =0 .因为AB的纵坐标为y1、y2 ,由韦达定理得   y1y2 =- 2px0 .特别地 ,当M(p2 ,0 )时 ,y1y2 =-p2 .(高中《解析几何》课本 10 1页第 8题 )逆定理 一条直线和抛物线y2 =2px(p >0 )相交 ,若两交点的纵坐标为y1、y2 ,且满足y1y2 =A(定值 ) ,则这条直线恒过定点 (- A2…  相似文献   

3.
在抛物线与直线的关系中 ,过抛物线焦点的直线与抛物线的关系尤为重要 ,这是因为在这一关系中具有一些很有用的性质 ,这些性质常常是高考命题的切入点 .本文对此作一些探讨 .不妨设抛物线方程为 y2 =2 px( p>0 ) ,则焦点F p2 ,0 ,准线l的方程 :x=-p2 .过焦点F的直线交抛物线于A(x1 ,y1 )、B(x2 ,y2 )两点 ,又作AA1 ⊥l,BB1 ⊥l,垂足分别为A1 、B1 .AB⊥x轴时 ,x1 =x2 =p2 ,A p2 ,p ,B p2 ,-p ,此时弦AB叫抛物线的通径 ,它的长|AB| =2 p .AB与x轴不垂直也不平行时 ,设弦AB所在直线的斜率为…  相似文献   

4.
文 [1]证明了有心圆锥曲线任一弦的斜率和弦中点与椭圆中心连线的斜率 (均存在且不为零 )之积为一定值 ,受此启发 ,本文给出抛物线的有关斜率的一对定值 ,并举例说明其在解题中的应用 ,聊作文[1]的补缀 .定理 1 设M (x0 ,y0 )是抛物线 y2 =2 px (p>0 )上的定点 ,A、B是抛物线上的两动点 ,若kMA·kMB =t (t≠ 0 ) ,则直线AB过定点x0 - 2pt ,- y0 .证明 设A(x1 ,y1 )、B(x2 ,y2 ) ,则有y21 =2 px1 ( 1) ,y22 =2 px2 ( 2 ) ,y20 =2 px0 ( 3) .( 1) - ( 2 )得  ( y1 y2 ) ( y1 - y2 ) =2 p(x1…  相似文献   

5.
今年高考“3 X”型数学试卷理科第 1 9题(文科第 2 0题 )是 :设抛物线y2 =2px(p >0 )的焦点为F ,经过焦点F的直线交抛物线于A、B两点 ,点C在抛物线的准线上 ,且BC ∥x轴 ,证明 :直线AC经过原点 .一、试题的背景揭示该试题是《平面解析几何》(全一册 ,必修 )第 1 0 0页习题八的第 8题 :“过抛物线y2 =2px(p>0 )的焦点的一条直线和这条抛物线相交 ,两个交点的纵坐标为y1 ,y2 ,求证 :y1 y2=-p2 ”的改变题 .二、过抛物线的焦点弦的性质设抛物线y2 =2px(p>0 )的焦点为F ,经过焦点F的直线交抛物线于A、B两点 ,若…  相似文献   

6.
笔者在研究抛物线的有关问题时 ,意外地得到了抛物线切线的几个性质及其判定方法 ,现以定理的形式介绍如下 :定理 1 P是抛物线 y2 =2 px上一动点 ,M是点P在准线上的射影 ,F为焦点 .过P点的直线l是该抛物线切线的充要条件是直线l垂直于直线MF .     图 1说明 设P点坐标为 (x0 ,y0 ) ,则M(-p2 ,y0 ) ,F(p2 ,0 ) ,当P点为抛物线顶点 ,即 y0=0时 ,定理显然成立 ;当P点不为抛物线顶点 ,即 y0 ≠ 0时 ,充分性 由题设知直线MF的斜率   kMF =y0- p2 - p2=- y0p.因直线l⊥MF ,且P∈l,由直线方程的…  相似文献   

7.
若圆锥曲线Γ的一个顶点为A ,与A不同的两动点M、N在曲线上 ,且∠MAN是直角 ,我们把线段MN叫做顶点A上的直角∠MAN所对的弦 ,即“顶点直角弦” ,笔者经探究发现二次曲线的顶点直角弦有一个耐人寻味的性质 ,这一性质揭示了二次曲线的一个共同的几何特征。命题 1 若M、N是抛物线 y2 =2 px(p >0 )上的图 1两动点 ,且满足OM⊥ON ,(O为坐标原点 ) ,求证 :直线MN过定点H (2 p ,0 )。(证略 )该命题的结论 ,启发笔者不断思考 :若把命题 1中的抛物线 ,改为椭圆、双曲线等圆锥曲线 ,是否有类似的性质呢 ?即圆锥曲线的一…  相似文献   

8.
本文给出圆锥曲线弦的中点坐标与该弦的垂直平分线的截距之间的关系 ,并举例说明它的应用 .定理 设圆锥曲线中与坐标轴不平行的弦P1P2 的中点为M (x0 ,y0 ) ,该弦的垂直平分线l与x轴的横截距为a ,与 y轴的纵截距为b .(1)对于椭圆或双曲线  x2A + y2B =1  (A >0 ,B >0或AB <0 ) ,有 a=A-BA x0 , b=B-AB y0 ;(2 ) 对于抛物线 y2 =2 px  (p ≠ 0 ) ,有  a=x0 + p , b=y0p(x0 + p) ;(3)对于抛物线x2 =2 py  (p≠ 0 ) ,有  a=x0p(y0 + p) , b =y0 + p .证明  (1) 设P1(x1…  相似文献   

9.
性质 1 如图 1,过点Q( -a ,0 ) (a >0 )的直线l与抛物线 y2 =2 px( p >0 )相交于M、N两点 ,H为 (a ,0 ) ,则∠MHQ =∠NHx .证明 设M (x1,y1) ,N(x2 ,y2 ) ,直线l:y=k(x a)  (k≠ 0 ) ,与抛物线方程 y2 =2 px联立 ,消去 y得k2 x2 ( 2ak2 - 2 p)x k2 a2 =0 .  由韦达定理知 x1x2 =a2 .又M、N在抛物线上 ,且在x轴的同侧 ,∴y1y2 =4 p2 x1x2 =2ap ,x1=y212 p,x2 =y222 p.由x1≠x2 ,知x1≠a ,x2 ≠a ,故直线MH、NH的斜率存在 .又kHM kNH =y1x1-a y2…  相似文献   

10.
1 题目与解法研究2 0 0 1年高考题 19(文 2 0 )题 :设抛物线 y2 =2 px(p>0 )的焦点为F ,经过点F的直线交抛物线于A、B两点 ,点C在抛物线的准线上 ,且BC∥x轴 ,证明直线AC经过原过O .     图 1证 1 如图 1,记x轴与抛物线准线l的交点为E ,过A作AD⊥l,D是垂足 ,于是有AD ∥EF∥BC .连结AC与EF相交于点N ,则|EN||AD| =|CN||AC| =|BF||AB|,|NF||BC| =|AF||AB|.根据抛物线的几何性质有|AF|=|AD| ,|BF|=|BC| ,所以|EN|=|AD|·|BF|…  相似文献   

11.
在数学教学中 ,有目的有意识地引导学生将课本中习题进行一题多变 ,对加强学生“三基”训练和培养学生思维灵活性、广阔性、深刻性及创造性是十分有益的 .特别是高考复习时 ,能够避免题海战 ,起到举一反三、以一当十之功效 .现以高中《平面解析几何》(必修 )第 99页习题第 8题为例加以说明 .原题 过抛物线 y2 =2 px的焦点的一条直线和这抛物线相交 ,两个交点A、B的坐标分别为 (x1,y1)、(x2 ,y2 ) ,求证 :y1y2 =- p2 .证明 (略 )1 逆向变换变题 1 已知抛物线方程 y2 =2px ,一条直线和这条抛物线相交于A、B两点 ,其坐标分…  相似文献   

12.
古希腊的三大数学问题之一的“倍立方”问题,多年以来,一直受到广大数学工作者的青睐,他们在努力寻找各种不同的作法.笔者在教学中得到一种有别于尺规作图的解析方法,现介绍给读者,以开阔眼界.问题 作一个正方体,使它的体积为已知正方体体积的2倍.预备定理 自抛物线x2=2py(p>0)的顶点O作一直线OA,交直线y=p于点A,交抛物线于点Q,过Q作x轴的平行线,过点A作y轴的平行线,两直线相交于点P,则点P的轨迹方程为y=2p3x-2.图1证明 如图1,设P(x,y)为轨迹上任意一点,取点Q的坐标(x1,y1)为参数,∵ O,Q,A在同一直线上,∴…  相似文献   

13.
20 0 1年高考数学理科试题给人们的一个印象是一幅幅熟悉的面孔 ,许多题目都来自教材与一些常见的复习用书 ,其设计特点是回归基础、回归课本、贴近实际 ,它要求考生学好基础知识、掌握基本方法、提高自身的基本数学素质 .1 .改变设问角度 ,考查解析几何的基本分析方法例 1 (理 1 9) 设抛物线y2 =2px(p>0 )的焦点为F ,经过点F的直线交抛物线于A、B两点 ,点C在抛物线的准线上 ,且BC ∥x轴 ,证明直线AC经过原点O .探源 :《平面解析几何》教材第 1 0 2页第 1 3题“过抛物线焦点的一条直线与它交于两点P、Q ,通过点P和抛物线…  相似文献   

14.
有关圆锥曲线弦的二端点与原点连线的斜率问题 ,涉及解析几何中许多重要的知识点 ,在各种考试的试题中经常出现 .若用常规方法解决 ,运算量大、过程冗繁 .本文通过实例介绍这类问题的一种简捷解法 .例 1  (1993年上海市高考试题 )抛物线 y=- 12 x2 与过点M(0 ,- 1)的直线l相交于A、B两点 ,O为坐标原点 .若直线OA与OB的斜率之和为1,求直线l的方程 .解 设直线l的方程为 y =kx- 1,即 1=kx-y .代入抛物线方程 2 y· 1+x2 =0得    2y(kx- y) +x2 =0 .整理后两边同时除以x2 ,有   2 (yx) 2 - 2k· (yx) - …  相似文献   

15.
本刊 2 0 0 1年第 10期的文 [1]对 2 0 0 1年全国高考解几试题进行演绎与深化 ,得出 10个命题 ,读后颇受启发 ,但尚觉意犹未尽 .本文对这道试题作进一步的推广与引伸 .显然这道高考试题是《平面解析几何》(必修 ) 99页题 13的逆问题 ,为此 ,我们把这道试题完善为充要条件的形式 ,得到     图 1命题A1 设F为抛物线 y2 =2 px(p >0 )的焦点 ,经过点F的直线交抛物线于A、B两点 ,点C在准线上 ,则直线AC经过抛物线的顶点O的充要条件是BC∥x轴 .命题A1揭示了抛物线的焦点、顶点、准线之间的一个相关性质 .我们自然要问 :椭…  相似文献   

16.
错在哪里     
题 由圆外一点Q(a,b)向圆x2+y2=r2作割线交圆于A、B两点,求AB中点的轨迹方程。 解 如图,设过Q的割线的方程为y-b=k(x-a),k为参数。过O点作OM⊥AB,由M为AB的中点,且OM所在直线的方程为y=-x/k。又M为QB所在直线与OM所在  相似文献   

17.
圆锥曲线上的点关于直线对称的有关问题 ,用构造二次函数法求解 ,不仅简单明快 ,精巧别致 ,而且程序明显 ,操作性强 ,同时对拓宽解题思路 ,加强学科间的联系也是非常有益的 .本文仅举几例说明 .例 1 直线l过抛物线 y2 =2 px (p >0 )的焦点F ,并且与该抛物线相交于A、B两点 ,求证 :对于抛物线任意给定的一条弦CD ,直线l不是CD的垂直平分线 .证明 设C(x1 ,y1 )、D(x2 ,y2 )是抛物线上任意两点 .( 1)若x1 =x2 ,则弦CD的中垂线为x轴 .由题意显见直线l不是x轴 ,此时命题成立 .( 2 )若x1 ≠x2 ,设Q(x ,y)是抛物…  相似文献   

18.
锥体的体积公式为V =13 Sh(其中S是锥体的底面积 ,h为锥体的高 ) .由此可类比地得出抛物线y=ax2 (a >0 )与x轴及直线x =m(m >0 )所围成的曲边三角形的面积公式为S =13 Lm(其中L为x=m时的函数值 ,即L =am2 ) .下面给出其初等证明 .图 1证明 如图 1 ,设抛物线y=ax2 的焦点为F(0 ,a4) ,准线方程为 y =- a4 ,直线x =m与抛物线y=ax2 交于点C ,与准线交于点B ,与x轴交于点D ,准线与 y轴交于点A .则梯形ABCF的面积为S梯形ABCF =12 m(a2 l a4)=12 m(34 a l) .矩形ABDO(O为坐标原点 …  相似文献   

19.
1 .反弹琵琶 ,独辟蹊径例 1 在椭圆 x2a2 + y2b2 =1(a >b >0 )上取一点P ,P与长轴两端点A、B的连线分别交短轴所在直线于M、N两点 ,设O为原点 ,求证 :|OM |·|ON|为定值 .证明 :设M ( 0 ,m)、N( 0 ,n) ,则lPA:y=m - 00 +a(x +a) ,①lPB:y =n - 00 -a(x -a) .           ②①×② ,得  y2 =- mna2 (x2 -a2 ) .又 y2 =b2 1- x2a2 ,故b2 a2 -x2a2 =- mna2 (x2 -a2 ) .mn =b2 ,为定值 .即 |OM |·|ON| =b2 ,为定值 .评注 :本题没有设出P点坐标进而求出M、N两…  相似文献   

20.
在平面解析几何中 ,关于平行直线有如下结论 :设有两条平行直线l1:Ax By C1=0和l2 :Ax By C2 =0 ,则到这两条直线距离相等的直线方程为Ax By C1 C22 =0 .证明 设P(x ,y)是所求直线上任一点 ,由题设以及点到直线的距离公式 ,有|Ax By C1|A2 B2 =|Ax By C2 |A2 B2 .  因为l1与l2 在点P的两侧 ,所以有Ax By C1=- (Ax By C2 ) ,即 Ax By C1 C22 =0为所求的直线方程 .运用该结论可以得到一种求直线对称点的新方法 .例 已知A(- 2 ,4 ) ,求它关于直线l:2x- y -1=0的对…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号