首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
BackgroundAn effective single culture with high glycerol consumption and hydrogen and ethanol coproduction yield is still in demand. A locally isolated glycerol-consuming Escherichia coli SS1 was found to produce lower hydrogen levels under optimized ethanol production conditions. Molecular approach was proposed to improve the hydrogen yield of E. coli SS1 while maintaining the ethanol yield, particularly in acidic conditions. Therefore, the effect of an additional copy of the native hydrogenase gene hycE and recombinant clostridial hydrogenase gene hydA on hydrogen production by E. coli SS1 at low pH was investigated.ResultsRecombinant E. coli with an additional copy of hycE or clostridial hydA was used for fermentation using 10 g/L (108.7 mmol/L) of glycerol with an initial pH of 5.8. The recombinant E. coli with hycE and recombinant E. coli with hydA showed 41% and 20% higher hydrogen yield than wild-type SS1 (0.46 ± 0.01 mol/mol glycerol), respectively. The ethanol yield of recombinant E. coli with hycE (0.50 ± 0.02 mol/mol glycerol) was approximately 30% lower than that of wild-type SS1, whereas the ethanol yield of recombinant E. coli with hydA (0.68 ± 0.09 mol/mol glycerol) was comparable to that of wild-type SS1.ConclusionsInsertion of either hycE or hydA can improve the hydrogen yield with an initial pH of 5.8. The recombinant E. coli with hydA could retain ethanol yield despite high hydrogen production, suggesting that clostridial hydA has an advantage over the hycE gene in hydrogen and ethanol coproduction under acidic conditions. This study could serve as a useful guidance for the future development of an effective strain coproducing hydrogen and ethanol.  相似文献   

2.
BackgroundPoly-3-hydroxybutyrate (PHB) can be efficiently produced in recombinant Escherichia coli by the overexpression of an operon (NphaCAB) encoding PHB synthetase. Strain improvement is considered to be one of critical factors to lower the production cost of PHB in recombinant system. In this study, one of key regulators that affect the cell growth and PHB content was confirmed and analyzed.ResultS17-3, a mutant E. coli strain derived from S17-1, was found to be able to achieve high cell density when expressing NphaCAB with the plasmid pBhya-CAB. Whole genome sequencing of S17-3 revealed genetic alternations on the upstream regions of csrA, encoding a global regulator cross-talking between stress response, catabolite repression and other metabolic activities. Deletion of csrA or expression of mutant csrA resulted in improved cell density and PHB content.ConclusionThe impact of gene deletion of csrA was determined, dysfunction of the regulators improved the cell density of recombinant E. coli and PHB production, however, the detail mechanism needs to be further clarified.How to cite: Wu H, Li S, Ji M, et al. Improvement of polyhydroxybutyrate production by deletion of csrA in Escherichia coli. Electron J Biotechnol 2020;46. https://doi.org/10.1016/j.ejbt.2020.04.005.  相似文献   

3.
BackgroundThe development of a potential single culture that can co-produce hydrogen and ethanol is beneficial for industrial application. Strain improvement via molecular approach was proposed on hydrogen and ethanol co-producing bacterium, Escherichia coli SS1. Thus, the effect of additional copy of native hydrogenase gene hybC on hydrogen and ethanol co-production by E. coli SS1 was investigated.ResultsBoth E. coli SS1 and the recombinant hybC were subjected to fermentation using 10 g/L of glycerol at initial pH 7.5. Recombinant hybC had about 2-fold higher cell growth, 5.2-fold higher glycerol consumption rate and 3-fold higher ethanol productivity in comparison to wild-type SS1. Nevertheless, wild-type SS1 reported hydrogen yield of 0.57 mol/mol glycerol and ethanol yield of 0.88 mol/mol glycerol, which were 4- and 1.4-fold higher in comparison to recombinant hybC. Glucose fermentation was also conducted for comparison study. The performance of wild-type SS1 and recombinant hybC showed relatively similar results during glucose fermentation. Additional copy of hybC gene could manipulate the glycerol metabolic pathway of E. coli SS1 under slightly alkaline condition.ConclusionsHybC could improve glycerol consumption rate and ethanol productivity of E. coli despite lower hydrogen and ethanol yields. Higher glycerol consumption rate of recombinant hybC could be an advantage for bioconversion of glycerol into biofuels. This study could serve as a useful guidance for dissecting the role of hydrogenase in glycerol metabolism and future development of effective strain for biofuels production.  相似文献   

4.
BackgroundIt has been a very common practice to use probiotics or their metabolites as alternative antimicrobial strategies for the treatment and prevention of infections as rampant and indiscriminate use of antibiotics causes the development of antibiotic-resistant pathogens. The objective of this study was to select a potential antimicrobial probiotic strain of Escherichia coli from the human gastrointestinal tract and investigate the production of diketopiperazines that contribute to the antimicrobial activity.ResultsE. coli GutM4 was isolated from the feces of a healthy adult. E. coli GutM4 showed significant antagonistic activity against 10 indicator pathogens, and this activity was no less than that of the reference strain E. coli Nissle 1917 against eight of the indicator pathogens. Moreover, E. coli GutM4 produced antagonistic substances containing trypsin-targeted peptide bonds because the inhibitory effects of E. coli GutM4 supernatant significantly decreased upon treatment with trypsin. Consistent with the antagonistic activity and peptide compounds of E. coli GutM4, 14 2,5-diketopiperazines were isolated from the fermented broth of E. coli GutM4, including 12 cyclo(Pro-Phe), 3 cyclo(Pro-Tyr), and 5 cyclo(4-hydroxyl-Pro-Leu), which are reported to have antipathogenic activity.ConclusionE. coli GutM4 produces 2,5-diketopiperazines that are partly involved in antagonistic action against human pathogens in vitro.  相似文献   

5.
BackgroundEndoglucanase plays a major role in initiating cellulose hydrolysis. Various wild-type strains were searched to produce this enzyme, but mostly low extracellular enzyme activities were obtained. To improve extracellular enzyme production for potential industrial applications, the endoglucanase gene of Bacillus subtilis M015, isolated from Thai higher termite, was expressed in a periplasmic-leaky Escherichia coli. Then, the crude recombinant endoglucanase (EglS) along with a commercial cellulase (Cel) was used for hydrolyzing celluloses and microbial hydrolysis using whole bacterial cells.ResultsE. coli Glu5 expressing endoglucanase at high levels was successfully constructed. It produced EglS (55 kDa) with extracellular activity of 18.56 U/mg total protein at optimal hydrolytic conditions (pH 4.8 and 50°C). EglS was highly stable (over 80% activity retained) at 40–50°C after 100 h. The addition of EglS significantly improved the initial sugar production rates of Cel on the hydrolysis of carboxymethyl cellulose (CMC), microcrystalline cellulose, and corncob about 5.2-, 1.7-, and 4.0-folds, respectively, compared to those with Cel alone. E. coli Glu5 could secrete EglS with high activity in the presence of glucose (1% w/v) and Tween 80 (5% w/v) with low glucose consumption. Microbial hydrolysis of CMC using E. coli Glu5 yielded 26 mg reducing sugar/g CMC at pH 7.0 and 37°C after 48 h.ConclusionsThe recombinant endoglucanase activity improved by 17 times compared with that of the native strain and could greatly enhance the enzymatic hydrolysis of all studied celluloses when combined with a commercial cellulase.  相似文献   

6.
BackgroundThe heterologous expression of parasitic proteins is challenging because the sequence composition often differs significantly from host preferences. However, the production of such proteins is important because they are potential drug targets and can be screened for interactions with new lead compounds. Here we compared two expression systems for the production of an active recombinant aldehyde dehydrogenase (SmALDH_312) from Schistosoma mansoni, which causes the neglected tropical disease schistosomiasis.ResultsWe produced SmALDH_312 successfully in the bacterium Escherichia coli and in the baculovirus expression vector system (BEVS). Both versions of the recombinant protein were found to be active in vitro, but the BEVS-derived enzyme showed 3.7-fold higher specific activity and was selected for further characterization. We investigated the influence of Mg2+, Ca2+ and Mn2+, and found out that the specific activity of the enzyme increased 1.5-fold in the presence of 0.5 mM Mg2+. Finally, we characterized the kinetic properties of the enzyme using a design-of-experiment approach, revealing optimal activity at pH 7.6 and 41°C.ConclusionsAlthough, E. coli has many advantages, such as rapid expression, high yields and low costs, this system was outperformed by BEVS for the production of a schistosome ALDH. BEVS therefore provides an opportunity for the expression and subsequent evaluation of schistosome enzymes as drug targets.How to cite: Harnischfeger J, Beutler M, Salzig D, et al. Biochemical characterization of the recombinant schistosome tegumental protein SmALDH_312 produced in E. coli and baculovirus expression vector system. Electron J Biotechnol 2021;54. https://doi.org/10.1016/j.ejbt.2021.08.002  相似文献   

7.
8.
BackgroundPhospholipase D (PLD) is used as the biocatalyst for phosphatidylserine (PS) production. In general, PLD was expressed in insoluble form in Escherichia coli. High-level soluble expression of PLD with high activity in E. coli is very important for industrial production of PLD.ResultsStreptomyces chromofuscus PLD coding gene was codon-optimized, cloned without signal peptide, and expressed in E. coli. The optimal recombinant E. coli pET-28a+PLD/BL21(DE3) was constructed with pET-28a without His-tag. The highest PLD activity reached 104.28 ± 2.67 U/mL in a 250-mL shake flask after systematical optimization. The highest PLD activity elevated to 122.94 ± 1.49 U/mL by feeding lactose and inducing at 20°C after scaling up to a 5.0-L fermenter. Substituting the mixed carbon source with 1.0 % (w/v) of cheap dextrin and adding a feeding medium could still attain a PLD activity of 105.81 ± 2.72 U/mL in a 5.0-L fermenter. Fish peptone from the waste of fish processing and dextrin from the starch are both very cheap, which were found to benefit the soluble PLD expression.ConclusionsAfter combinatorial optimization, the high-level soluble expression of PLD was fulfilled in E. coli. The high PLD activity along with cheap medium obtained at the fermenter level can completely meet the requirements of industrial production of PLD.How to cite: Wu R, Cao J, Liu F, et al. High-level soluble expression of phospholipase D from Streptomyces chromofuscus in Escherichia coli by combinatorial optimization. Electron J Biotechnol 2021;50.https://doi.org/10.1016/j.ejbt.2020.12.002  相似文献   

9.
BackgroundLarge amounts of β-alanine are required in fine chemical and pharmaceutical synthesis and other fields. Profitable and green methods are required for the industrial production of β-alanine.ResultsReplacing endogenous panD of Escherichia coli with heterologous CgpanD from Corynebacterium glutamicum enabled β-alanine synthesis of 0.67 g/L by strain B0016-082BB. Overexpressing CgpanD on both plasmids and chromosomes to enhance the rate-limiting step improved the β-alanine titer to 4.25 g/L in strain B0016-083BB/pPL451-panD with a slighter metabolic burden. Growth factors were introduced by addition of yeast extract, and 6.65 g/L of β-alanine was synthesized by strain B0016-083BB/pPL451-panD in the M9-3Y medium.ConclusionsEnhancement of the rate-limiting steps in the β-alanine biosynthetic pathway, recruitment of the temperature-sensitive inducible pL promoter, and optimization of the fermentation process could efficiently increase β-alanine production in E. coli.How to cite: Xua J, Zhua Y, Zhou Z. Systematic engineering of the rate-limiting step of β-alanine biosynthesis in Escherichia col. Electron J Biotechnol 2021;51. https://doi.org/10.1016/j.ejbt.2021.03.002.  相似文献   

10.
BackgroundPiercing/sucking insect pests in the order Hemiptera causes substantial crop losses by removing photoassimilates and transmitting viruses to their host plants. Cloning and heterologous expression of plant-derived insect resistance genes is a promising approach to control aphids and other sap-sucking insect pests. While expression from the constitutive 35S promoter provides broad protection, the phloem-specific rolC promoter provides better defense against sap sucking insects. The selection of plant-derived insect resistance genes for expression in crop species will minimize bio-safety concerns.ResultsPinellia ternata leaf agglutinin gene (pta), encodes an insecticidal lectin, was isolated and cloned under the 35S and rolC promoters in the pGA482 plant transformation vector for Agrobacterium-mediated tobacco transformation. Integration and expression of the transgene was validated by Southern blotting and qRT-PCR, respectively. Insect bioassays data of transgenic tobacco plants showed that expression of pta under rolC promoter caused 100% aphid mortality and reduced aphid fecundity up to 70% in transgenic tobacco line LRP-9. These results highlight the better effectivity of pta under rolC promoter to control phloem feeders, aphids.ConclusionsThese findings suggested the potential of PTA against aphids and other sap sucking insect pests. Evaluation of gene in tobacco under two different promoters; 35S constitutive promoter and rolC phloem-specific promoter could be successfully use for other crop plants particularly in cotton. Development of transgenic cotton plants using plant-derived insecticidal, PTA, would be key step towards commercialization of environmentally safe insect-resistant crops.How to citeUmer N, Naqvi RZ, Rauf I, et al. Expression of Pinellia ternata leaf agglutinin under rolC promoter confers resistance against a phytophagous sap sucking aphid, Myzus persicae. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.07.004.  相似文献   

11.
BackgroundThe extracellular expression of enzymes in a secretion host such as Bacillus subtilis is a useful strategy in reducing the cost of downstream processing of industrial enzymes. Here, we present the first report of the successful extracellular expression in Bacillus subtilis WB800 of Geobacillus stearothermophilus lipase (T1.2RQ), a novel industriallydesirable thermostable lipolytic enzyme which has an excellent hydrolytic and transesterification activity. Signal peptides of α-amylase, extracellular protease, and lipase A, as well as two different promoters, were used in the secretion and expression of lipase T1.2RQ.ResultsLipase activity assay using p-nitrophenyl laurate showed that all three signal peptides directed the secretion of lipase T1.2RQ into the extracellular medium. The signal peptide of lipase A, resulted in the highest extracellular yield of 5.6 U/ml, which corresponds to a 6-fold increase over the parent Bacillus subtilis WB800 strain. SDS-PAGE and zymogram analysis confirmed that lipase T1.2RQ was correctly processed and secreted in its original size of 44 kDa. A comparison of the expression levels of lipase T1.2RQ in rich medium and minimal media showed that the enzyme was better expressed in rich media, with up to an 8-fold higher yield over minimal media. An attempt to further increase the lipase expression level by promoter optimization showed that, contrary to expectation, the optimized promoter exhibited similar expression levels as the original one, suggesting the need for the optimization of downstream factors.ConclusionsThe successful extracellular secretion of lipase T1.2RQ in Bacillus subtilis represents a remarkable feat in the industrial-scale production of this enzyme.How to cite: Ridwan E, Suwanto A, Thenawidjaja M. Extracellular expression in Bacillus subtilis of a thermostable Geobacillus stearothermophilus lipase. Electron J Biotechnol 2021;53. https://doi.org/10.1016/j.ejbt.2021.07.003  相似文献   

12.
BackgroundGABA (γ-aminobutyric acid) is a four-carbon nonprotein amino acid that has hypotensive, diuretic, and tranquilizing properties. Glutamate decarboxylase (GAD) is the key enzyme to generate GABA. A simple and economical method of preparing and immobilizing GAD would be helpful for GABA production. In this study, the GAD from Lactobacillus fermentum YS2 was expressed under the control of a stress-inducible promoter and was purified and immobilized in a fusion form, and its reusability was investigated.ResultsThe fusion protein CBM-GAD was expressed in Escherichia coli DH5α carrying pCROCB-gadB, which contained promoter PrpoS, cbm3 (family 3 carbohydrate-binding module from Clostridium thermocellum) coding sequence, the gadB gene from L. fermentum YS2 coding for GAD, and the T7 terminator. After a one-step purification of CBM-GAD using regenerated amorphous cellulose (RAC) as an adsorbent, SDS-PAGE analysis revealed a clear band of 71 kDa; the specific activity of the purified fusion protein CBM-GAD reached 83.6 ± 0.7 U·mg-1. After adsorption onto RAC, the immobilized GAD with CBM3 tag was repeatedly used for GABA synthesis. The protein-binding capacity of RAC was 174 ± 8 mg·g-1. The immobilized CBM-GAD could repeatedly catalyze GABA synthesis, and 8% of the initial activities was retained after 10 uses. We tested the conversion of monosodium glutamate to GABA by the immobilized enzyme; the yield reached 5.15 g/L and the productivity reached 3.09 g/L·h.ConclusionsRAC could be used as an adsorbent in one-step purification and immobilization of CBM-GAD, and the immobilized enzyme could be repeatedly used to catalyze the conversion of glutamate to GABA.  相似文献   

13.
BackgroundRhizoctonia solani (teleomorph: Thanatephorus cucumeris) is one of the most important pathogens of rice (Oryza sativa L.) that causes severe yield losses in all rice-growing regions. Sclerotia, formed from the aggregation of hyphae, are important structures in the life cycles of R. solani and contain a large quantity of polysaccharides, lipids, proteins and pigments. In order to extract high-quality total RNA from the sclerotia of R. solani, five methods, including E.Z.N.A.™ Fungal RNA Kit, sodium dodecyl sulfate (SDS)–sodium borate, SDS–polyvinylpyrrolidone (PVP), guanidinium thiocyanate (GTC) and modified Trizol, were compared in this study.ResultsThe electrophoresis results showed that it failed to extract total RNA from the sclerotia using modified Trizol method, whereas it could extract total RNA from the sclerotia using other four methods. Further experiments confirmed that the total RNA extracted using SDS–sodium borate, SDS–PVP and E.Z.N.A.™ Fungal RNA Kit methods could be used for RT-PCR of the specific amplification of GAPDH gene fragments, and that extracted using GTC method did not fulfill the requirement for above-mentioned RT-PCR experiment.ConclusionIt is concluded that SDS–sodium borate and SDS–PVP methods were the better ones for the extraction of high-quality total RNA that could be used for future gene cloning and expression studies, whereas E.Z.N.A.™ Fungal RNA Kit was not taken into consideration when deal with a large quantity of samples because it is expensive and relatively low yield.  相似文献   

14.
BackgroundDegP is a serine protease that specifically cleaves and refolds unfolding proteins in the periplasmic space of the cells. To date, there is no information regarding DegP from halophilic bacteria. Chromohalobacter salexigens BKL5 is a moderately halophilic bacterium that has the ability to grow in a media containing more than 15% salt. Therefore, the objectives of this work were to clone and overexpress DegP-encoding gene from C. salexigens BKL5 and characterize its biochemical properties.ResultsDegP-encoding gene was overexpressed in Escherichia coli BL21(DE3) CodonPlus in an active form. SDS-PAGE analysis showed that the molecular weight of the recombinant DegP was 45 kDa. Size-exclusion chromatography analysis suggested that recombinant DegP was present in two multimeric states, hexameric and dodecameric, with molecular weights of 297.9 and 579.12 kDa, respectively. Both conformations were enzymatically active when casein was used as substrate for enzymatic assay. Circular dichroism analysis showed that recombinant DegP was composed of 0.21–0.29 helical content, which was comparable to the helical content in the crystal structure of E. coli DegP. The basic/acidic residue ratio of recombinant DegP was 0.56, which was slightly higher than that of DegP from extreme halophiles (average, 0.45) but significantly lower than that of DegP from nonhalophiles (average, 0.94).ConclusionsRecombinant DegP from C. salexigens BKL5 showed proteolytic activity when β-casein was used as a substrate. In silico analysis indicated that recombinant DegP had characteristics similar to those of halophilic proteins depending on its amino acid composition.  相似文献   

15.
16.
BackgroundMaize is one of the most important crops worldwide and has been a target of nuclear-based transformation biotechnology to improve it and satisfy the food demand of the ever-growing global population. However, the maize plastid transformation has not been accomplished due to the recalcitrant condition of the crop.ResultsIn this study, we constructed two different vectors with homologous recombination sequences from maize (Zea mays var. LPC13) and grass (Bouteloua gracilis var. ex Steud) (pZmcpGFP and pBgcpGFP, respectively). Both vectors were designed to integrate into rrn23S/rrn16S from an inverted repeat region in the chloroplast genome. Moreover, the vector had the mgfp5 gene driven by Prrn, a leader sequence of the atpB gene and a terminator sequence from the rbcL gene. Also, constructs have an hph gene as a selection marker gene driven by Prrn, a leader sequence from rbcL gene and a terminator sequence from the rbcL gene. Explants of maize, tobacco and Escherichia coli cells were transformed with both vectors to evaluate the transitory expression–an exhibition of green and red fluorescent light under epifluorescence microscopy. These results showed that both vectors were expressed; the reporter gene in all three organisms confirmed the capacity of the vectors to express genes in the cell compartments.ConclusionsThis paper is the first report of transient expression of GFP in maize embryos and offers new information for genetically improving recalcitrant crops; it also opens new possibilities for the improvement in maize chloroplast transformation with these vectors.How to cite: Arévalo-Gallegos S, Varela-Rodríguez H, Lugo-Aguilar H, et al. Transient expression of a green fluorescent protein in tobacco and maize chloroplast. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.008  相似文献   

17.
18.
BackgroundThe enzymes utilized in the process of beer production are generally sensitive to higher temperatures. About 60% of them are deactivated in drying the malt that limits the utilization of starting material in the fermentation process. Gene transfer from thermophilic bacteria is a promising tool for producing barley grains harboring thermotolerant enzymes.ResultsGene for α-amylase from hydrothermal Thermococcus, optimally active at 75–85°C and pH between 5.0 and 5.5, was adapted in silico to barley codon usage. The corresponding sequence was put under control of the endosperm-specific promoter 1Dx5 and after synthesis and cloning transferred into barley by biolistics. In addition to model cultivar Golden Promise we transformed three Slovak barley cultivars Pribina, Levan and Nitran, and transgenic plants were obtained. Expression of the ~ 50 kDa active recombinant enzyme in grains of cvs. Pribina and Nitran resulted in retaining up to 9.39% of enzyme activity upon heating to 75°C, which is more than 4 times higher compared to non-transgenic controls. In the model cv. Golden Promise the grain α-amylase activity upon heating was above 9% either, however, the effects of the introduced enzyme were less pronounced (only 1.22 fold difference compared with non-transgenic barley).ConclusionsExpression of the synthetic gene in barley enhanced the residual α-amylase activity in grains at high temperatures.  相似文献   

19.
BackgroundWe aimed to test the possibility of improving polypeptide production from soybean meal fermentation by engineered Aspergillus oryzae strains. Four different protease genes were cloned and transformed into wild-type A. oryzae, and the engineered A. oryzae strains were then used for soybean meal fermentation.ResultsThe results showed different degrees of improvement in the protease activity of the four transformants when compared with wild-type A. oryzae. A major improvement in the polypeptide yield was achieved when these strains were used in soybean meal fermentation. The polypeptide conversion rate of one of the four transformants, A. oryzae pep, reached 35.9%, which was approximately twofold higher than that exhibited by wild-type A. oryzae. Amino acid content analysis showed that the essential amino acid content and amino acid composition of the fermentation product significantly improved when engineered A. oryzae strains were used for soybean meal fermentation.ConclusionsThese findings suggest that cloning of microbial protease genes with good physicochemical properties and expressing them in an ideal host such as A. oryzae is a novel strategy to enhance the value of soybean meal.  相似文献   

20.
BackgroundLawsonia intracellularis remains a problem for the swine industry worldwide. Previously, we designed and obtained a vaccine candidate against this pathogen based on the chimeric proteins: OMP1c, OMP2c, and INVASc. These proteins formed inclusion bodies when expressed in E. coli, which induced humoral and cellular immune responses in vaccinated pigs. Also, protection was demonstrated after the challenge. In this study, we established a production process to increase the yields of the three antigens as a vaccine candidate.ResultsBatch and fed-batch fermentations were evaluated in different culture conditions using a 2 L bioreactor. A fed-batch culture with a modified Terrific broth medium containing glucose instead of glycerol, and induced with 0.75 mM IPTG at 8 h of culture (11 g/L of biomass) raised the volumetric yield to 627.1 mg/L. Under these culture conditions, plasmid-bearing cells increased by 10% at the induction time. High efficiency in cell disruption was obtained at passage six using a high-pressure homogenizer and a bead mill. The total antigen recovery was 64% (400 mg/L), with a purity degree of 70%. The antigens retained their immunogenicity in pigs, inducing high antibody titers.ConclusionsConsidering that the antigen production process allowed an increment of more than 70-fold, this methodology constitutes a crucial step in the production of this vaccine candidate against L. intracellularis.How to cite: Salazar S, Gutiérrez N, Sánchez O, et al. Establishment of a production process for a novel vaccine candidate against Lawsonia intracellularis. Electron J Biotechnol 2021.https://doi.org/10.1016/j.ejbt.2021.01.002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号