首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this study was to evaluate two practical interval training protocols on cardiorespiratory fitness, lipids and body composition in overweight/obese women. Thirty women (mean ± SD; weight: 88.1 ± 15.9 kg; BMI: 32.0 ± 6.0 kg · m2) were randomly assigned to ten 1-min high-intensity intervals (90%VO2 peak, 1 min recovery) or five 2-min high-intensity intervals (80–100% VO2 peak, 1 min recovery) or control. Peak oxygen uptake (VO2 peak), peak power output (PPO), body composition and fasting blood lipids were evaluated before and after 3 weeks of training, completed 3 days per week. Results from ANCOVA analyses demonstrated no significant training group differences for any primary variables (P > 0.05). When training groups were collapsed, 1MIN and 2MIN resulted in a significant increase in PPO (?18.9 ± 8.5 watts; P = 0.014) and time to exhaustion (?55.1 ± 16.4 s; P = 0.001); non-significant increase in VO2 peak (?2.36 ± 1.34 ml · kg?1 · min?1; P = 0.185); and a significant decrease in fat mass (FM) (??1.96 ± 0.99 kg; P = 0.011). Short-term interval exercise training may be effective for decreasing FM and improving exercise tolerance in overweight and obese women.  相似文献   

2.
ABSTRACT

Introduction: High-Intensity Interval Training (HIIT) and Constant-Intensity Endurance Training (CIET) improves peak oxygen uptake (V?O2) similarly in adults; but in children this remains unclear, as does the influence of maturity. Methods: Thirty-seven boys formed three groups: HIIT (football; n = 14; 14.3 ± 3.1 years), CIET (distance runners; n = 12; 13.1 ± 2.5 years) and a control (CON) group (n = 11; 13.7 ± 3.2 years). Peak V?O2 and gas exchange threshold (GET) were determined from a ramp test and anaerobic performance using a 30 m sprint pre-and-post a three-month training cycle. Results: The HIIT groups peak V?O2 was significantly higher than the CON group pre (peak V?O2: 2.54 ± 0.63 l·min-1 vs 2.03 ± 0.53 l·min-1, d = 0.88; GET: 1.41 ± 0.26 l·min-1 vs 1.13 ± 0.29 l·min-1, d = 1.02) and post-training (peak V?O2: 2.63 ± 0.73 l·min-1 vs 2.08 ± 0.64 l·min-1, d = 0.80; GET: 1.32 ± 0.33 l·min-1 vs 1.15 ± 0.38 l·min-1, d = 0.48). All groups showed a similar magnitude of change during the training (p > 0.05). Conclusion: HIIT was not superior to CIET for improving aerobic or anaerobic parameters in adolescents. Secondly, pre- and post-pubertal participants demonstrated similar trainability.  相似文献   

3.
Abstract

The single-stage treadmill walking test of Ebbeling et al. is commonly used to predict maximal oxygen consumption ([Vdot]O2max) from a submaximal effort between 50% and 70% of the participant's age-predicted maximum heart rate. The purpose of this study was to determine if this submaximal test correctly predicts [Vdot]O2max at the low (50% of maximum heart rate) and high (70% of maximum heart rate) ends of the specified heart rate range for males and females aged 18 – 55 years. Each of the 34 participants completed one low-intensity and one high-intensity trial. The two trials resulted in significantly different estimates of [Vdot]O2max (low-intensity trial: mean 40.5 ml · kg?1 · min?1, s = 9.3; high-intensity trial: 47.5 ml · kg?1 · min?1, s = 8.8; P < 0.01). A subset of 22 participants concluded their second trial with a [Vdot]O2max test (mean 47.9 ml · kg?1 · min?1, s = 8.9). The low-intensity trial underestimated (mean difference = ?3.5 ml · kg?1 · min?1; 95% CI = ?6.4 to ?0.6 ml · kg?1 · min?1; P = 0.02) and the high-intensity trial overestimated (mean difference = 3.5 ml · kg?1 · min?1; 95% CI = 1.1 to 6.0 ml · kg?1 · min?1; P = 0.01) the measured [Vdot]O2max. The predictive validity of Ebbeling and colleagues' single-stage submaximal treadmill walking test is diminished when performed at the extremes of the specified heart rate range.  相似文献   

4.
Abstract

We assessed the agreement between maximal oxygen consumption ([Vdot]O2max) measured directly when performing the 20-m shuttle run test and estimated [Vdot]O2max from five different equations (i.e. Barnett, equations a and b; Léger; Matsuzaka; and Ruiz) in youths. The 20-m shuttle run test was performed by 26 girls (mean age 14.6 years, s = 1.5; body mass 57.2 kg, s = 8.9; height 1.60 m, s = 0.06) and 22 boys (age 15.0 years, s = 1.6; body mass 63.5 kg, s = 11.5; height 1.70 m, s = 0.01). The participants wore a portable gas analyser (K4b2, Cosmed) to measure [Vdot]O2 during the test. All the equations significantly underestimated directly measured [Vdot]O2max, except Barnett's (b) equation. The mean difference ranged from 1.3 ml · kg?1 · min?1 (Barnett (b)) to 5.5 ml · kg?1 · min?1 (Léger). The standard error of the estimate ranged from 5.3 ml · kg?1 · min?1 (Ruiz) to 6.5 ml · kg?1 · min?1 (Léger), and the percentage error ranged from 21.2% (Ruiz) to 38.3% (Léger). The accuracy of the equations available to estimate [Vdot]O2max from the 20-m shuttle run test is questionable at the individual level. Furthermore, special attention should be paid when comparisons are made between studies (e.g. population-based studies) using different equations. The results of the present study suggest that Barnett's (b) equation provides the closest agreement with directly measured [Vdot]O2max (cardiorespiratory fitness) in youth.  相似文献   

5.
6.
Abstract

Power output and heart rate were monitored for 11 months in one female ([Vdot]O2max: 71.5 mL · kg?1 · min?1) and ten male ([Vdot]O2max: 66.5 ± 7.1 mL · kg?1 · min?1) cyclists using SRM power-meters to quantify power output and heart rate distributions in an attempt to assess exercise intensity and to relate training variables to performance. In total, 1802 data sets were divided into workout categories according to training goals, and power output and heart rate intensity zones were calculated. The ratio of mean power output to respiratory compensation point power output was calculated as an intensity factor for each training session and for each interval during the training sessions. Variability of power output was calculated as a coefficient of variation. There was no difference in the distribution of power output and heart rate for the total season (P = 0.15). Significant differences were observed during high-intensity workouts (P < 0.001). Performance improvements across the season were related to low-cadence strength workouts (P < 0.05). The intensity factor for intervals was related to performance (P < 0.01). The variability in power output was inversely associated with performance (P < 0.01). Better performance by cyclists was characterized by lower variability in power output and higher exercise intensities during intervals.  相似文献   

7.
Purpose: The purpose of this study was to quantify and compare training and competition demands in basketball. Methods: Fifteen semiprofessional male basketball players wore microsensors during physical conditioning training (PCT), games-based training (GBT), and competition to measure absolute and relative (·min?1) PlayerLoadTM (PL) and estimated equivalent distance (EED). Internal responses were calculated using absolute and relative session rating of perceived exertion (sRPE) and summated heart rate zones (SHRZ). Integrated measures were calculated as sRPE:PL and SHRZ:PL ratios. Results: PlayerLoad (arbitrary units [AU]) and EED (m) were statistically significantly (p < .05) higher during PCT (632 ± 139 AU, d = 1.36; 5,964 ± 1,312 m, d = 1.36; 6.50 ± 0.81 AU·min?1, d = 2.44; 61.88 ± 7.22 m·min?1, d = 2.60) and GBT (624 ± 113 AU, d = 1.54; 5,892 ± 1,080 m, d = 1.53; 6.10 ± 0.77 AU·min?1, d = 2.14; 56.76 ± 6.49 m·min?1, d = 2.22) than they were during competition (449 ± 118 AU; 3,722 ± 1474 m; 4.35 ± 1.09 AU·min?1; 41.01 ± 10.29 m·min?1). Summated heart rate zones were statistically significantly (p < .05) higher during PCT (314 ± 86 AU, d = 1.05; 3.22 ± 0.50 AU·min?1, d = 1.94) and GBT (334 ± 79 AU, d = 1.38; 3.19 ± 0.54 AU·min?1, d = 1.83) than they were during competition (225 ± 77 AU; 2.17 ± 0.69 AU·min?1). The ratio of sRPE:PL was statistically significantly (p < .05) higher during competition (1.58 ± 0.85) than during PCT (0.98 ± 0.22, d = 1.44) and GBT (0.91 ± 0.24, d = 1.90). Conclusion: Training demands exceeded competition demands.  相似文献   

8.
This study compared the effects of 12-week sprint interval training (SIT), high-intensity interval training (HIIT), and moderate-intensity continuous training (MICT) on cardiorespiratory fitness (V?O2peak), body mass and insulin sensitivity in overweight females. Forty-two overweight women (age 21.2 ± 1.4 years, BMI 26.3 ± 2.5 kg·m?2) were randomized to the groups of SIT (80 × 6-s sprints + 9-s rest), and isoenergetic (300KJ) HIIT (~9 × 4-min cycling at 90% V?O2peak + 3-min rest) and MICT (cycling at 60% V?O2peak for ~ 61-min). Training intervention was performed 3 d·week?1 for 12 weeks. After intervention, all three groups induced the same improvement in V?O2peak (~ +25%, p < 0.001) and a similar reduction in body mass (~ – 5%, p < 0.001). Insulin sensitivity and fasting insulin levels were improved significantly on post-training measures in SIT and HIIT by ~26% and ~39% (p < 0.01), respectively, but remain unchanged in MICT. In contrast, fasting glucose levels were only reduced with MICT (p < 0.01). The three training strategies are equally effective in improving V?O2peak and reducing body mass, however, the SIT is time-efficient. High-intensity training (i.e. SIT and HIIT) seems to be more beneficial than MICT in improving insulin sensitivity.

Abbreviations: BMI: body mass index; CVD: cardiovascular disease; HIEG: hyperinsulinaemic euglycaemic glucose; HIIT: high-intensity interval training; HOMA-IR: homeostasis model assessment of insulin resistance; HR: heart rate; MICT: moderate-intensity continuous training; RPE: ratings of perceived exertion; SIT: sprint interval training; T2D: type 2 diabetes; V?O2peak: peak oxygen consumption  相似文献   


9.
10.
Abstract

The aim of this study was to evaluate the physiological effects of soccer and Zumba among female hospital employees during a 40-week intervention period. Hospital employees (n = 118) were cluster-randomised to either a soccer group (n = 41), a Zumba group (n = 38) or a control group (n = 39). Both training groups were encouraged to perform 1-h training sessions twice a week outside working hours throughout the 40 weeks. Maximal oxygen uptake (VO2 max), blood pressure and body composition were measured and blood samples collected before and after the intervention period. Using intention-to-treat analyses, the Zumba group improved VO2 max compared to the control group (2.2 mL · kg?1 · min?1, 95% CI, 0.9, 3.5, = 0.001), with no significant increase in the soccer group (1.1 mL · kg?1 · min?1, 95% CI, ?0.2, 2.4, = 0.08). Both intervention groups reduced total body fat mass and fat percentage compared to the control group (P < 0.01). In the soccer group, but not the Zumba group, a significant difference in lower limb bone mineral density and bone mineral content was observed in comparison to the control group (P < 0.01). Furthermore, the soccer group, but not the Zumba group, had increased plasma osteocalcin (6.6 µg · L?1, 95% CI, 2.2, 11.0, P < 0.01) and decreased plasma leptin (?6.6 µg · L?1, 95% CI, ?12.5, ?0.7, P < 0.05) compared to the control group. The present study suggests that workplace-initiated soccer and Zumba training comprising 1–2 sessions per week outside working hours may promote physiological health among female hospital employees.  相似文献   

11.
Abstract

Maximal oxygen uptake ([Vdot]O2max) is considered the optimal method to assess aerobic fitness. The measurement of [Vdot]O2max, however, requires special equipment and training. Maximal exercise testing with determination of maximal power output offers a more simple approach. This study explores the relationship between [Vdot]O2max and maximal power output in 247 children (139 boys and 108 girls) aged 7.9–11.1 years. Maximal oxygen uptake was measured by indirect calorimetry during a maximal ergometer exercise test with an initial workload of 30 W and 15 W · min?1 increments. Maximal power output was also measured. A sample (n = 124) was used to calculate reference equations, which were then validated using another sample (n = 123). The linear reference equation for both sexes combined was: [Vdot]O2max (ml · min?1) = 96 + 10.6 · maximal power + 3.5 · body mass. Using this reference equation, estimated [Vdot]O2max per unit of body mass (ml · min?1 · kg?1) calculated from maximal power correlated closely with the direct measurement of [Vdot]O2max (r = 0.91, P <0.001). Bland-Altman analysis gave a mean limits of agreement of 0.2±2.9 (ml · min?1 · kg?1) (1 s). Our results suggest that maximal power output serves as a good surrogate measurement for [Vdot]O2max in population studies of children aged 8–11 years.  相似文献   

12.
Game-based training drills are popular in team sports. This study compared two game-based training conditions and official matches in team handball. Thirty-one women players wore inertial measurement units in five training sessions and five official matches. In training, 3vs3 and 6vs6 game-based training conditions were performed with a 5-min duration. PlayerLoad? and high-intensity events (HIEs; >2.5 m · s?1) were extracted from the raw data. Data were analysed using magnitude-based inferences and reported with effect sizes (ESs). PlayerLoad? · min?1 from all positions combined was 11.37 ± 0.49 (mean ± 90% confidence limits) and 9.71 ± 0.3 for the 3vs3 and 6vs6 conditions, respectively. Backs (ES: 1.63), wings (ES: 1.91), and pivots (ES: 1.58) had greater PlayerLoad? in 3vs3 than 6vs6. Substantially greater HIE · min?1 in 3vs3 occurred for all positions. There was substantially greater PlayerLoad? · min?1 in 3vs3 and 6vs6 than match play for backs, wings, and pivots. Wings (ES: 1.95), pivots (ES: 0.70), and goalkeeper (ES: 1.13) had substantially greater HIE · min?1 in 3vs3 than match play. This study shows greater PlayerLoad? and HIE in 3vs3 than 6vs6. Both game-based training conditions investigated in this study provide an overload in overall PlayerLoad?; however, additional exercises might be needed to overload HIE, especially for backs and pivots.  相似文献   

13.
Carbohydrate (CHO) availability during endurance exercise seems to attenuate exercise-induced perturbations of cellular homeostasis and might consequently diminish the stimulus for training adaptation. Therefore, a negative effect of CHO intake on endurance training efficacy seems plausible. This study aimed to test the influence of carbohydrate intake on the efficacy of an endurance training program on previously untrained healthy adults. A randomized cross-over trial (8-week wash-out period) was conducted in 23 men and women with two 8-week training periods (with vs. without intake of 50g glucose before each training bout). Training intervention consisted of 4x45 min running/walking sessions/week at 70% of heart rate reserve. Exhaustive, ramp-shaped exercise tests with gas exchange measurements were conducted before and after each training period. Outcome measures were maximum oxygen uptake (VO2max) and ventilatory anaerobic threshold (VT). VO2max and VT increased after training regardless of CHO intake (VO2max: Non-CHO 2.6 ± 3.0 ml*min?1*kg?1 p = 0.004; CHO 1.4 ± 2.5 ml*min?1*kg?1 p = 0.049; VT: Non-CHO 4.2 ± 4.2 ml*min?1*kg?1 p < 0.001; CHO 3.0 ± 4.2 ml*min?1*kg?1 p = 0.003). The 95% confidence interval (CI) for the difference between conditions was between +0.1 and +2.1 ml*min?1*kg?1 for VO2max and between ?1.2 and +3.1 for VT. It is concluded that carbohydrate intake could potentially impair the efficacy of an endurance training program.  相似文献   

14.
This study examined the separate and combined effects of heat acclimation and hand cooling on post-exercise cooling rates following bouts of exercise in the heat. Seventeen non-heat acclimated (NHA) males (mean ± SE; age, 23 ± 1 y; mass, 75.30 ± 2.27 kg; maximal oxygen consumption [VO2 max], 54.1 ± 1.3 ml·kg?1·min?1) completed 2 heat stress tests (HST) when NHA, then 10 days of heat acclimation, then 2 HST once heat acclimated (HA) in an environmental chamber (40°C; 40%RH). HSTs were 2 60-min bouts of treadmill exercise (45% VO2 max; 2% grade) each followed by 10 min of hand cooling (C) or no cooling (NC). Heat acclimation sessions were 90–240 min of treadmill or stationary bike exercise (60–80% VO2 max). Repeated measures ANOVA with Fishers LSD post hoc (α < 0.05) identified differences. When NHA, C (0.020 ± 0.003°C·min?1) had a greater cooling rate than NC (0.013 ± 0.003°C·min?1) (mean difference [95%CI]; 0.007°C [0.001,0.013], P = 0.035). Once HA, C (0.021 ± 0.002°C·min?1) was similar to NC (0.025 ± 0.002°C·min?1) (0.004°C [?0.003,0.011], P = 0.216). Hand cooling when HA (0.021 ± 0.002°C·min?1) was similar to when NHA (0.020 ± 0.003°C·min?1) (P = 0.77). In conclusion, when NHA, C provided greater cooling rates than NC. Once HA, C and NC provided similar cooling rates.  相似文献   

15.
ABSTRACT

The aims of this study were to analyse the optimal cadence for peak power production and time to peak power in bicycle motocross (BMX) riders. Six male elite BMX riders volunteered for the study. Each rider completed 3 maximal sprints at a cadence of 80, 100, 120 and 140 revs · min?1 on a laboratory Schoberer Rad Messtechnik (SRM) cycle ergometer in isokinetic mode. The riders’ mean values for peak power and time of power production in all 3 tests were recorded. The BMX riders produced peak power (1105 ± 139 W) at 100 revs · min?1 with lower peak power produced at 80 revs · min?1 (1060 ± 69 W, (F(2,15) = 3.162; P = .266; η2 = 0.960), 120 revs · min?1 (1077 ± 141 W, (F(2,15) = 4.348; P = .203; η2 = 0.970) and 140 revs · min?1 (1046 ± 175 W, (F(2,15) = 12.350; P = 0.077; η2 = 0.989). The shortest time to power production was attained at 120 revs · min?1 in 2.5 ± 1.07 s. Whilst a cadence of 80 revs · min?1 (3.5 ± 0.8 s, (F(2,15) = 2.667; P = .284; η2 = 0.800) 100 revs · min?1 (3.00 ± 1.13 s, (F(2,15) = 24.832; P = .039; η2 = 0.974) and 140 revs · min?1 (3.50 ± 0.88 s, (F(2,15) = 44.167; P = .006; η2 = 0.967)) all recorded a longer time to peak power production. The results indicate that the optimal cadence for producing peak power output and reducing the time to peak power output are attained at comparatively low cadences for sprint cycling events. These findings could potentially inform strength and conditioning training to maximise dynamic force production and enable coaches to select optimal gear ratios.  相似文献   

16.
Abstract

In this study, we investigated the effect of biological maturation on maximal oxygen uptake ([Vdot]O2max) and ventilatory thresholds (VT1 and VT2) in 110 young soccer players separated into pubescent and post-pubescent groups.. Maximal oxygen uptake and [Vdot]O2 corresponding to VT1 and VT2 were expressed as absolute values, ratio standards, theoretical exponents, and experimentally observed exponents. Absolute [Vdot]O2 (ml · min?1) was different between groups for VT1, VT2, and [Vdot]O2max. Ratio standards (ml · kg?1 · min?1) were not significantly different between groups for VT1, VT2, and [Vdot]O2max. Theoretical exponents (ml · kg?0.67 · min?1 and ml · kg?0.75 · min?1) were not properly adjusted for the body mass effects on VT1, VT2, and [Vdot]O2max. When the data were correctly adjusted using experimentally observed exponents, VT1 (ml · kg?0.94 · min?1) and VT2 (ml · kg?0.95 · min?1) were not different between groups. The experimentally observed exponent for [Vdot]O2max (ml · kg?0.90 · min?1) was different between groups (P = 0.048); however, this difference could not be attributed to biological maturation. In conclusion, biological maturation had no effect on VT1, VT2 or [Vdot]O2max when the effect of body mass was adjusted by experimentally observed exponents. Thus, when evaluating the physiological performance of young soccer players, allometric scaling needs to be taken into account instead of using theoretical approaches.  相似文献   

17.
Abstract

The aim of this study was to examine the effects of exercise type, field dimensions, and coach encouragement on the intensity and reproducibility of small-sided games. Data were collected on 20 amateur soccer players (body mass 73.1 ± 8.6 kg, stature 1.79 ± 0.05 m, age 24.5 ± 4.1 years, [Vdot]O2max 56.3 ± 4.8 ml · kg?1 · min?1). Aerobic interval training was performed during three-, four-, five- and six-a-side games on three differently sized pitches, with and without coach encouragement. Heart rate, rating of perceived exertion (RPE) on the CR10-scale, and blood lactate concentration were measured. Main effects were found for exercise type, field dimensions, and coach encouragement (P < 0.05), but there were no interactions between any of the variables (P > 0.15). During a six-a-side game on a small pitch without coach encouragement, exercise intensity was 84 ± 5% of maximal heart rate, blood lactate concentration was 3.4 ± 1.0 mmol · l?1, and the RPE was 4.8. During a three-a-side game on a larger pitch with coach encouragement, exercise intensity was 91 ± 2% of maximal heart rate, blood lactate concentration was 6.5 ± 1.5 mmol · l?1, and the RPE was 7.2. Typical error expressed as a coefficient of variation ranged from 2.0 to 5.4% for percent maximal heart rate, from 10.4 to 43.7% for blood lactate concentration, and from 5.5 to 31.9% for RPE. The results demonstrate that exercise intensity during small-sided soccer games can be manipulated by varying the exercise type, the field dimensions, and whether there is any coach encouragement. By using different combinations of these factors, coaches can modulate exercise intensity within the high-intensity zone and control the aerobic training stimulus.  相似文献   

18.
Abstract

This study was designed to investigate the effect of ingesting a glucose plus fructose solution on the metabolic responses to soccer-specific exercise in the heat and the impact on subsequent exercise capacity. Eleven male soccer players performed a 90 min soccer-specific protocol on three occasions. Either 3 ml · kg?1 body mass of a solution containing glucose (1 g · min?1 glucose) (GLU), or glucose (0.66 g · min?1) plus fructose (0.33 g · min?1) (MIX) or placebo (PLA) was consumed every 15 minutes. Respiratory measures were undertaken at 15-min intervals, blood samples were drawn at rest, half-time and on completion of the protocol, and muscle glycogen concentration was assessed pre- and post-exercise. Following the soccer-specific protocol the Cunningham and Faulkner test was performed. No significant differences in post-exercise muscle glycogen concentration (PLA, 62.99 ± 8.39 mmol · kg wet weight?1; GLU 68.62 ± 2.70; mmol · kg wet weight?1 and MIX 76.63 ± 6.92 mmol · kg wet weight?1) or exercise capacity (PLA, 73.62 ± 8.61 s; GLU, 77.11 ± 7.17 s; MIX, 83.04 ± 9.65 s) were observed between treatments (P > 0.05). However, total carbohydrate oxidation was significantly increased during MIX compared with PLA (P < 0.05). These results suggest that when ingested in moderate amounts, the type of carbohydrate does not influence metabolism during soccer-specific intermittent exercise or affect performance capacity after exercise in the heat.  相似文献   

19.
Abstract

Graded exercise tests are commonly used to assess peak physiological capacities of athletes. However, unlike time trials, these tests do not provide performance information. The aim of this study was to examine the peak physiological responses of female outrigger canoeists to a 1000-m ergometer time trial and compare the time-trial performance to two graded exercise tests performed at increments of 7.5 W each minute and 15 W each two minutes respectively. 17 trained female outrigger canoeists completed the time trial on an outrigger canoe ergometer with heart rate (HR), stroke rate, power output, and oxygen consumption ([Vdot]O2) determined every 15 s. The mean (± s) time-trial time was 359 ± 33 s, with a mean power output of 65 ± 16 W and mean stroke rate of 56 ± 4 strokes · min?1. Mean values for peak [Vdot]O2, peak heart rate, and mean heart rate were 3.17 ± 0.67 litres · min?1, 177 ± 11 beats · min?1, and 164 ± 12 beats · min?1 respectively. Compared with the graded exercise tests, the time-trial elicited similar values for peak heart rate, peak power output, peak blood lactate concentration, and peak [Vdot]O2. As a time trial is sport-specific and can simultaneously quantify sprint performance and peak physiological responses in outrigger canoeing, it is suggested that a time trial be used by coaches for crew selection as it doubles as a reliable performance measure and a protocol for monitoring peak aerobic capacity of female outrigger canoeists.  相似文献   

20.
This study compares test-retest reliability and peak exercise responses from ramp-incremented (RAMP) and maximal perceptually-regulated (PRETmax) exercise tests during arm crank exercise in individuals reliant on manual wheelchair propulsion (MWP). Ten untrained participants completed four trials over 2-weeks (two RAMP (0–40 W + 5–10 W · min?1) trials and two PRETmax. PRETmax consisted of five, 2-min stages performed at Ratings of Perceived Exertion (RPE) 11, 13, 15, 17 and 20). Participants freely changed the power output to match the required RPE. Gas exchange variables, heart rate, power output, RPE and affect were determined throughout trials. The V?O2peak from RAMP (14.8 ± 5.5 ml · kg?1 · min?1) and PRETmax (13.9 ± 5.2 ml · kg?1 · min?1) trials were not different (P = 0.08). Measurement error was 1.7 and 2.2 ml · kg?1 · min?1 and coefficient of variation 5.9% and 8.1% for measuring V?O2peak from RAMP and PRETmax, respectively. Affect was more positive at RPE 13 (P = 0.02), 15 (P = 0.01) and 17 (P = 0.01) during PRETmax. Findings suggest that PRETmax can be used to measure V?O2peak in participants reliant on MWP and leads to a more positive affective response compared to RAMP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号