首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Free radical production increases during exercise and oxidative damage occurs in several tissues. We examined the effects of three different exercise tests on the pattern of change of erythrocyte enzyme antioxidant activities. The tests were a short maximal exercise test, a submaximal prolonged exercise test and a cycling stage during competition. The participants were amateur and professional cyclists with different training statuses and different basal erythrocyte antioxidant enzyme activities. The maximal test produced no changes in the erythrocyte antioxidant enzyme activities of amateur sportsmen. The submaximal test, performed at 80% of maximal oxygen uptake, decreased erythrocyte catalase (12%), glutathione peroxidase determined with H2O2 (14%) and glutathione reductase (16%); superoxide dismutase activity increased by about 25%. The cycling stage performed by professional cyclists increased erythrocyte catalase (29%) and glutathione reductase (10%) activities. The in vivo changes in glutathione reductase activity were confirmed by in vitro measurements: hydrogen peroxide decreased and the presence of catalase increased the activity of this enzyme. In conclusion, we suggest that the different erythrocyte antioxidant enzyme responses to diverse exercise tests can be explained by the effects of hydrogen peroxide and the superoxide anion on the antioxidant enzyme activities in erythrocytes.  相似文献   

2.
Abstract

The aim of this study was to investigate whether different phases of training affect oxidative stress and antioxidant defences in professional cyclists. Ten professional cyclists, aged 21.8 ± 2.5 years, were enrolled in the study. They were classified into two groups of five athletes each one with similar nutritional intake excepting for the overload of vitamin C (1000 mg day?1) and E (400 mg day?1) supplementation in one of them. The cyclists of both groups performed the same exercise design, consisting of hard, tapering and recovery training periods. Total antioxidant capacity (TAC) of the diet, plasma oxygen radical absorption capacity (ORAC), lipid peroxidation (LPO), DNA damage (8-OHdG) and erythrocyte glutathione disulfide/glutathione ratio (GSSG:GSH?1) were measured. During the intense exercise trainings, the cyclists without vitamin supplements had the TAC of diet significantly lower than the supplemented group. Plasma ORAC, LPO and 8-OHdG were similar in both groups of athletes. Athletes with supplements had a basal LPO:ORAC?1 ratio lower than that without supplements, but this ratio converged to the same level at the end of the training in both groups of cyclists. Both groups of cyclists showed similar changes in GSSG:GSH?1 ratio and in GSSG and GSH levels along the study. The data suggest that well-trained athletes with suitable ultra-endurance training volume and intensity do not require antioxidant vitamin supplements to adapt their endogenous antioxidant defenses to exercise-induced ROS.  相似文献   

3.
Maximal strength, power, muscle cross-sectional area, maximal and submaximal cycling endurance characteristics and serum hormone concentrations of testosterone, free testosterone and cortisol were examined in three groups of men: weightlifters (n = 11), amateur road cyclists (n = 18) and age-matched controls (n = 12). Weightlifters showed 45-55% higher power values than road cyclists and controls, whereas the differences in maximal strength and muscle mass were only 15% and 20%, respectively. These differences were maintained when average power output was expressed relative to body mass or relative to muscle cross-sectional area. Road cyclists recorded 44% higher maximal workloads, whereas submaximal blood lactate concentration was 50-55% lower with increasing workload than in controls and weightlifters. In road cyclists, workloads associated with blood lactate concentrations of 2 and 4 mmol.l-1 were 50-60% higher and occurred at a higher percentage of maximal workload than in weightlifters or controls. Basal serum total testosterone and free testosterone concentrations were lower in elite amateur cyclists than in age-matched weightlifters or untrained individuals. Significant negative correlations were noted between the individual values of maximal workload, workloads at 2 and 4 mmol.l-1 and the individual values of muscle power output (r = -0.37 to -0.49), as well as the individual basal values of serum total testosterone and free testosterone (r = -0.39 to -0.41). These results indicate that the specific status of the participants with respect to training, resistance or endurance is important for the magnitude of the neuromuscular, physiological and performance differences observed between weightlifters and road cyclists. The results suggest that, in cycling, long-term endurance training may interfere more with the development of muscle power than with the development of maximal strength, probably mediated by long-term cycling-related impairment in anabolic hormonal status.  相似文献   

4.
Aim: The aim of this study was to examine the relationship between ventilatory adaptation and performance during altitude training at 2700?m. Methods: Seven elite cyclists (age: 21.2?±?1.1?yr, body mass: 69.9?±?5.6?kg, height 176.3?±?4.9?cm) participated in this study. A hypoxic ventilatory response (HVR) test and a submaximal exercise test were performed at sea level prior to the training camp and again after 15 d at altitude (ALT15). Ventilation (VE), end-tidal carbon-dioxide partial pressure (PETCO2) and oxyhaemoglobin saturation via pulse oximetry (SpO2) were measured at rest and during submaximal cycling at 250?W. A hill climb (HC) performance test was conducted at sea level and after 14 d at altitude (ALT14) using a road of similar length (5.5–6?km) and gradient (4.8–5.3%). Power output was measured using SRM cranks. Average HC power at ALT14 was normalised to sea level power (HC%). Multiple regression was used to identify significant predictors of performance at altitude. Results: At ALT15, there was a significant increase in resting VE (10.3?±?1.9 vs. 12.2?±?2.4?L·min?1) and HVR (0.34?±?0.24 vs. 0.71?±?0.49?L·min?1·%?1), while PETCO2 (38.4?±?2.3 vs. 32.1?±?3.3?mmHg) and SpO2 (97.9?±?0.7 vs. 94.0?±?1.7%) were reduced (P?VE at altitude as significant predictors of HC% (adjusted r2?=?0.913; P?=?0.003). Conclusions: Ventilatory acclimatisation occurred during a 2 wk altitude training camp in elite cyclists and a higher HVR was associated with better performance at altitude, relative to sea level. These results suggest that ventilatory acclimatisation is beneficial for cycling performance at altitude.  相似文献   

5.
Abstract

The practice of exercise has shown to be beneficial to quality of life of individuals with HIV/AIDS. Thus, the present study analysed the effects of a combined exercise training in persons living with HIV/AIDS. Ten participants participated in the present study. The following variables were analysed: viral load and cell counts for TCD4+/TCD8; maximal oxygen consumption (VO2max); total mass, absolute fat mass, relative fat mass, absolute lean mass, relative lean mass and body mass index; fasting glycaemia, fasting insulinaemia, homeostatic model assessment (HOMA) index (insulin resistance – homeostatic model assessment (IR-HOMA)); total cholesterol, triglycerides, high-density lipoprotein (HDL), very low-density lipoprotein (VLDL), low-density lipoprotein (LDL); superoxide dismutase, catalase, glutathione peroxidase activities; thiobarbituric acid reactive substances. The combined exercise training consisted of resistance exercises plus aerobic training (60 min · session?1, three times per week, during 20 weeks). The number of TCD4+ cells, absolute lean mass and relative lean mass, muscle strength for the 45° leg press, seated row and triceps extension, HDL-c levels as well as VO2max increased post-training. The activity of superoxide dismutase, catalase, glutathione peroxidase enzymes and thiobarbituric acid reactive substances levels were diminished post-training. Finally, it can be concluded that combined exercise training is able to change positively several variables related to health of individuals with HIV/AIDS, mainly the immune system as well as antioxidant mechanisms re-establishment.  相似文献   

6.
The varying results reported in response to β-alanine supplementation may be related to the duration and nature of the exercise protocol employed. We investigated the effects of β-alanine supplementation on a wide range of cycling performance tests in order to produce a clear concise set of criteria for its efficacy. Fourteen trained cyclists (Age?=?24.8?±?6.7?years; VO2max?=?65.4?±?10.2 mL·kg·min?1) participated in this placebo-controlled, double-blind study. Prior to supplementation, subjects completed two (familiarization and baseline) supramaximal cycling bouts until exhaustion (120% pre-supplementation VO2max) and two 1-, 4- and 10-km cycling time trial (TT). Subjects then supplemented orally for 4 weeks with 6.4?g/d placebo or β-alanine and repeated the battery of performance tests. Blood lactate was measured pre-exercise, post-exercise and 5 min post-exercise. β-alanine supplementation elicited significant increases in time to exhaustion (TTE) (17.6?±?11.5 s; p?=?0.013, effect compared with placebo) and was likely to be beneficial to 4-km TT performance time (?7.8?±?8.1 s; 94% likelihood), despite not being statistically different (p?=?0.060). Performance times in the 1- and 10-km TT were not affected by treatment. For the highly trained cyclists in the current study, β-alanine supplementation significantly extended supramaximal cycling TTE and may have provided a worthwhile improvement to 4-km TT performance. However, 1- and 10-km cycling TT performance appears to be unaffected by β-alanine supplementation.  相似文献   

7.
We tested the hypothesis that work-matched supramaximal intermittent warm-up improves final-sprint power output to a greater degree than submaximal constant-intensity warm-up during the last 30?s of a 120-s supramaximal exercise simulating the final sprint during sports events lasting approximately 2?min. Ten male middle-distance runners performed a 120-s supramaximal cycling exercise consisting of 90?s of constant-workload cycling at a workload corresponding to 110% maximal oxygen uptake (VO2max) followed by 30?s of maximal-effort cycling. This exercise was preceded by 1) no warm-up (Control), 2) a constant-workload cycling warm-up at a workload of 60%VO2max for 6?min and 40?s, or 3) a supramaximal intermittent cycling warm-up for 6?min and 40?s consisting of 5 sets of 65?s of cycling at a workload of 46%VO2max?+?15?s of supramaximal cycling at a workload of 120%VO2max. By design, total work was matched between the two warm-up conditions. Supramaximal intermittent and submaximal constant-workload warm-ups similarly increased 5-s peak (590?±?191 vs. 604?±?215W, P?=?0.41) and 30-s mean (495?±?137 vs. 503?±?154W, P?=?0.48) power output during the final 30-s maximal-effort cycling as compared to the no warm-up condition (5-s peak: 471?±?165W; 30-s mean: 398?±?117W). VO2 during the 120-s supramaximal cycling was similarly increased by the two warm-ups as compared to no-warm up (P?≤?0.05). These findings show that work-matched supramaximal intermittent and submaximal constant-workload warm-ups improve final sprint (~30?s) performance to similar extents during the late stage of a 120-s supramaximal exercise bout.  相似文献   

8.
Abstract

Exercise-induced oxidative stress is implicated in muscle damage and fatigue which has led athletes to embark on antioxidant supplementation regimes to negate these effects. This study investigated the intake of vitamin C (VC) (1 g), blackcurrant (BC) juice (15 mg VC, 300 mg anthocyanins) and placebo in isocaloric drink form on training progression, incremental running test and 5-km time-trial performance. Twenty-three trained female runners (age, 31±8 y; mean±SD) completed three blocks of high-intensity training for 3 wks and 3 days, separated by a washout (~3.7 wks). Changes in training and performance with each treatment were analysed with a mixed linear model, adjusting for performance at the beginning of each training block. Markers of oxidative status included protein carbonyl, malondialdehyde (in plasma and in vitro erythrocytes), ascorbic acid, uric acid and erythrocyte enzyme activity of superoxide dismutase, catalase and glutathione peroxidase were analysed. There was a likely harmful effect on mean running speed during training when taking VC (1.3%; 90% confidence limits ±1.3%). Effects of the two treatments relative to placebo on mean performance in the incremental test and time trial were unclear, but runners faster by 1 SD of peak speed demonstrated a possible improvement on peak running speed with BC juice (1.9%; ±2.5%). Following VC, certain oxidative markers were elevated: catalase at rest (23%; ±21%), protein carbonyls at rest (27%; ±38%) and superoxide dismutase post-exercise (8.3%; ±9.3%). In conclusion, athletes should be cautioned about taking VC chronically, however, BC may improve performance in the elite.  相似文献   

9.
Abstract

Thai ginseng, Kaempferia parviflora, is widely believed among the Mong hill tribe to reduce perceived effort and improve physical work capacity. Kaempferia parviflora is consumed before their daily work. Therefore, we conducted an acute study on the effects of K. parviflora on repeated bouts of sprint exercise and on endurance exercise time to exhaustion. Two studies were conducted in college males using a randomized, double-blind, crossover design. Ninety minutes after consumption of K. parviflora or a starch placebo, participants in study 1 (n = 19) completed three consecutive maximum 30-s sprint cycling Wingate tests, separated by 3 min recovery, while participants in study 2 (n = 16) performed submaximal cycling exercise to exhaustion. Peak and mean power output decreased with successive Wingate tests, while percent fatigue and blood lactate concentration increased after the third Wingate test (P < 0.05). There were no detectable differences in any measures with or without K. parviflora. There was also no effect of K. parviflora on time to exhaustion, rating of perceived exertion or heart rate during submaximal exercise. Our results indicate that acute ingestion of K. parviflora failed to improve exercise performance during repeated sprint exercise or submaximal exercise to exhaustion. However, chronic effects or actions in other populations cannot be excluded.  相似文献   

10.
目的:观察长期耐力训练及限食对老龄大鼠骨骼肌线粒体氧化及抗氧化水平的影响,比较其单独及协同作用,为"线粒体衰老"学说提供一定的理论依据。方法:32只17月龄雄性SD大鼠分为4组:安静组(Control,C)、限食组(Caloric-Restricted,CR)、运动组(Exercise,E)和限食加运动组(Caloric-restricted and Exercise,E+CR),训练方式为跑台运动,中等运动强度(64%VO2max,15m/min,60分钟/天,每周5天),限食摄入的标准为正常摄入组的60%,共训练及限食12周,相同月龄对照组正常饲养。12周后于末次训练后取大鼠骨骼肌分别进行线粒体氧化损伤水平及抗氧化水平测定。结果:CR组、E组和CR+E组骨骼肌线粒体丙二醛(malondialdehyde,MDA)含量显著降低,锰超氧化物歧化酶(manganese-containing superoxide dismutase,MnSOD)活性显著增加,谷胱甘肽过氧化物酶(glutathion peroxidase,GSH-PX)活性显著增加;E组和CR+E组骨骼肌线粒体过氧化氢酶(catalase,CAT)活性显著增加。结论:耐力训练提高机体的抗氧化水平,同时使细胞机能节省化,耗氧量相对下降而减少了自由基的产生,限食减弱了机体的氧化应激,减少了自由基的产生,阻止了脂质过氧化,同时限食动员了一系列的适应性的网络防御机制,增加了抗氧化水平,加强了防御。耐力运动在机体抗氧化能力上明显强于限食作用,而耐力运动与限食的协同作用对某些抗氧化酶的影响强于其单独作用的影响。  相似文献   

11.
Abstract

The power output achieved at peak oxygen consumption (VO 2Peak) and the time this power can be maintained (i. e., Tmax) have been used in prescribing high-intensity interval training. In this context, the present study examined temporal aspects of the VO2 response to exercise at the cycling power that output well trained cyclists achieve their VO 2peak (i. e., Pmax). Following a progressive exercise test to determine VO 2peak, 43 well trained male cyclists (M age = 25 years, SD = 6; M mass = 75 kg, SD = 7; M VO2 peak = 64.8 ml-kg1 min?1, SD = 5.2) performed two Tmax tests 1 week apart. Values expressed for each participant are means and standard deviations of these two tests. Participants achieved a mean VO 2peak during the Tmax test after 176 s (SD = 40; M = 74% of Tmax, SD = 12) and maintained it for 66 s (SD = 39; M = 26% of Tmax, SD = 12). Additionally, they obtained mean 95% of VO 2peak after 147 s (SD = 31; M = 62% of Tmax, SD = 8) and maintained it for 95 s (SD = 38; M = 38 % of Tmax, SD = 8). These results suggest that 60–70 % of Tmax is an appropriate exercise duration for a population of well trained cyclists to attain VO 2peak during exercise at Pmax. However, due to intraparticipant variability in the temporal aspects of the VO2 response to exercise at Pmax, future research is needed to examine whether individual high-intensity interval training programs for well trained endurance athletes might best be prescribed according to an athlete's individual VO2 response to exercise at Pmax.  相似文献   

12.
Carnitine is an essential co‐factor in the catabolism of fats as an energy source. The primary purpose of this study was to investigate the effect of running a marathon on the metabolism of carnitine by endurance‐trained athletes, and to evaluate the effect of carnitine administration on the performance of such exercise. The effects of marathon running on mitochondrial enzymes and cellular anti‐oxidants were also examined to assess whether the expression of these activities is altered by exercise. Subjects were 10 experienced male marathon runners aged between 19 and 25 years. Running a marathon caused a fall in the plasma content of unesterified carnitine (37%) and an increase in the level of acetylcarnitine present (288%). Loading of the athletes with L‐carnitine for 10 days before running a marathon abolished the exercise‐induced fall in plasma‐free carnitine (P<0.05) whilst amplifying the production of acetylcarnitine (P<0.05). Carnitine loading of the athletes studied made no detectable improvement in performance of the marathon (P > 0.05). Cytochrome oxidase, succinate cytochrome C reductase and Superoxide dismutase activities present in skeletal muscle were unaltered by marathon running. However, such exercise caused a large increase in the tissue content of oxidized glutathione (189%) at the expense of reduced glutathione (–18%).  相似文献   

13.
Strenuous physical exercise induces oxidative stress. There may be a number of sources of this oxidative stress, including mitochondrial superoxide production, ischaemia-reperfusion mechanisms and auto-oxidation of catecholamines. Severe or prolonged exercise can overwhelm antioxidant defences, which include vitamins E and C and thiol antioxidants, which are interlinked in an antioxidant network, as well as antioxidant enzymes. Evidence for oxidative stress and damage during exercise comes from direct measurement of free radicals, from measurement of damage to lipids and DNA, and from measurement of antioxidant redox status, especially glutathione. There is little evidence that antioxidant supplementation can improve performance, but a large body of work suggests that bolstering antioxidant defences may ameliorate exercise-induced damage, suggesting that the benefits of antioxidant intervention may be for the long term rather than the short term.  相似文献   

14.
ABSTRACT

The aim of this study is to investigate whether the change in (sub)maximal heart rate after intensified training is associated with the change in performance. Thirty subjects were recruited who performed cardiopulmonary exercise tests to exhaustion 2 weeks before (pre), 1 week after (post) and 5 weeks after (follow-up) an 8-day non-competitive amateur cycling event (TFL). The exercise volume during the TFL was 7.7 fold the volume during the preparation period. Heart rate and cardiopulmonary parameters were obtained at standardised absolute submaximal workloads (low, medium and high intensity) and at peak level each test. Subjects were classified as functionally overreached (FOR) or acute fatigued (AF) based on the change in performance. No differences between FOR and AF were observed for heart rate (P?=?.51). On total group level (AF?+?FOR), post-TFL heart rate decreased significantly at low (?4.4 beats·min?1, 95% CI [?8.7, ?0.1]) and medium (?5.5 beats·min?1 [?8.5, ?2.4]), but not at high intensity. Peak heart rate decreased ?3.4 beats·min?1 [?6.1, ?0.7]. O2pulse was on average 0.49?ml O2·beat?1 [0.09, 0.89] higher at all intensities after intensified training. No changes in ?O2 (P?=?.44) or the ventilatory threshold (P?=?.21) were observed. Pearson’s correlation coefficients revealed negative associations between heart rate and O2pulse at low (r?=??.56, P?<?.01) and medium intensity (r?=??.54, P?<?.01), but not with ?O2 or any other submaximal parameter. (Sub)maximal heart rate decreased after the TFL. However, this decrease is unrelated to the change in performance. Therefore, heart rate seems inadequate to prescribe and monitor intensified training.  相似文献   

15.
The study was designed to determine the effect of upright-posture (UP) versus semirecumbent (SR) cycling on commonly used measures of maximal and submaximal exercise capacity. Nine healthy, untrained men (M age = 27 years, SD = 4.8 years) underwent steady-state submaximal aerobic testing followed by a ramped test to determine maximal oxygen consumption (VO2max). Anaerobic peak and average power and total work were assessed with the Wingate test. All tests were performed in both SR and UP positions, in random order. Oxygen consumption (VO2) and ventilation (VE) at the maximum workrate were lower in the SR position (p < .05). At submaximal workrates (50 W and 100 W), VO2 and VE were equivalent in the UP and SR positions, despite differences in tidal volume and respiratory rate (p < .05). There was no difference in peak or average anaerobic power in the two positions. In summary, SR exercise was associated with a reduced VO2max and a significantly altered ventilatory response to aerobic exercise, with no change in anaerobic power output.  相似文献   

16.
Physiological correlates to off-road cycling performance   总被引:1,自引:1,他引:0  
The aim of this study was to examine the relationships between maximal and submaximal tests for aerobic fitness and performance in an off-road cross-country circuit race. Thirteen competitive off-road male cyclists participated in the study. Peak oxygen uptake (VO2peak), peak power output, and lactate thresholds corresponding to 1 mmol x l(-1) above baseline (lactate threshold) and to 4 mmol x l(-1) (onset of blood lactate accumulation) were measured during an incremental cycling test. Race time and final ranking within the same group of cyclists were determined during a cross-country off-road competition. All correlations between the measured parameters of aerobic fitness and off-road cycling performance were significant, particularly between race time and physiological parameters scaled to body mass0.79 (r = -0.68 to -0.94; P < 0.05) and between final ranking and physiological parameters expressed relative to body mass0.79 (r = -0.81 to - 0.96; P < 0.001). Moreover, there was a large difference (effect sizes = 1.12-1.70) in all measured parameters of aerobic fitness between the group of six cyclists with a race time above the median and the group of six cyclists with a race time below the median (P < 0.05). In conclusion, the results of this study provide empirical support to the widespread use of these maximal (VO2peak, peak power output) and submaximal (lactate thresholds) parameters of aerobic fitness in the physiological assessments of off-road cyclists. Furthermore, our results suggest body size should be taken into account when evaluating such athletes.  相似文献   

17.
Carnitine is an essential co-factor in the catabolism of fats as an energy source. The primary purpose of this study was to investigate the effect of running a marathon on the metabolism of carnitine by endurance-trained athletes, and to evaluate the effect of carnitine administration on the performance of such exercise. The effects of marathon running on mitochondrial enzymes and cellular anti-oxidants were also examined to assess whether the expression of these activities is altered by exercise. Subjects were 10 experienced male marathon runners aged between 19 and 25 years. Running a marathon caused a fall in the plasma content of unesterified carnitine (37%) and an increase in the level of acetylcarnitine present (288%). Loading of the athletes with L-carnitine for 10 days before running a marathon abolished the exercise-induced fall in plasma-free carnitine (P less than 0.05) whilst amplifying the production of acetylcarnitine (P less than 0.05). Carnitine loading of the athletes studied made no detectable improvement in performance of the marathon (P greater than 0.05). Cytochrome oxidase, succinate cytochrome C reductase and superoxide dismutase activities present in skeletal muscle were unaltered by marathon running. However, such exercise caused a large increase in the tissue content of oxidized glutathione (189%) at the expense of reduced glutathione (-18%).  相似文献   

18.
The purpose of this study was to investigate asymmetry of muscle activation in participants with different levels of experience and performance with cycling. Two separate experiments were conducted, one with nine cyclists and one with nine non-cyclists. The experiments involved incremental maximal and sub-maximal constant load cycling tests. Bilateral surface electromyography (EMG) and gross and net muscle efficiency were assessed. Analyses of variance in mixed linear models and t-tests were conducted. The cyclists in Experiment 1 presented higher gross efficiency (P < 0.05), whereas net efficiency did not differ between the two experiments (21.3 ± 1.4% and 19.8 ± 1.0% for cyclists and non-cyclists, respectively). The electrical muscle activity increased significantly with exercise intensity regardless of leg preference in both experiments. The coefficient of variation of EMG indicated main effects of leg in both experiments. The non-preferred leg of non-cyclists (Experiment 2) presented statistically higher variability of muscle activity in the gastrocnemius medialis and vastus lateralis. Our findings suggest similar electrical muscle activity between legs in both cyclists and non-cyclists regardless of exercise intensity. However, EMG variability was asymmetric and appears to be strongly influenced by exercise intensity for cyclists and non-cyclists, especially during sub-maximal intensity. Neural factors per se do not seem to fully explain previous reports of pedalling asymmetries.  相似文献   

19.
Abstract

Following fixed-duration exercise of submaximal intensity, caffeine ingestion is associated with an attenuation of the exercise-induced decline in N-formyl-methionyl-phenyl-alanine (f-MLP) stimulated neutrophil oxidative burst. However, the response following high-intensity exhaustive exercise is unknown. Nine endurance-trained male cyclists ingested 6 mg caffeine or placebo per kilogram of body mass 60 min before cycling for 90 min at 70% of maximal oxygen consumption ([Vdot]O2max) and then performing a time-trial requiring an energy expenditure equivalent to 30 min cycling at 70% maximum power output. Time-trial performance was 4% faster in the caffeine than in the placebo trial (P = 0.043). Caffeine was associated with an increased plasma adrenaline concentration after 90 min of exercise (P = 0.046) and immediately after the time-trial (P = 0.02). Caffeine was also associated with an increased serum caffeine concentration (P < 0.01) after 90 min of exercise and immediately after the time-trial, as well as 1 h after the time-trial. However, the f-MLP-stimulated neutrophil oxidative burst response fell after exercise in both trials (P = 0.002). There was no effect of caffeine on circulating leukocyte or neutrophil counts, but the lymphocyte count was significantly lower on caffeine (20%) after the time-trial (P = 0.003). Our results suggest that high-intensity exhaustive exercise negates the attenuation of the exercise-induced decrease in neutrophil oxidative burst responses previously observed when caffeine is ingested before exercise of fixed duration and intensity. This may be associated with the greater increase in adrenaline concentration observed in the present study.  相似文献   

20.
Abstract

The bradycardia effect of a 10-week jogging program was studied in 13 previously sedentary middle-aged subjects (seven women and six men). This response during standardized submaximal treadmill walking and leg cycling was related to changes in cardiac output ([Qdot]), stroke volume (SV), and arteriovenous oxygen differences (a-vO2 diff). Heart rate (HR) response was also studied during load carrying and arm cycling tasks, and a [Vdot]O2 max test was administered. All tests were repeated posttraining. The posttraining increases in [Vdot]O2 max (ml/kg × min-1) were 19.7% and 14.8% for the men and women respectively. Training also produced significant reductions in submaximal HR and Q during treadmill and leg cycling exercise. A-vO2 diff rose, while there were no changes in [Vdot]O2 during the submaximal work tasks, suggesting either altered blood flow or a greater capacity to utilize O2 by the working muscle. Both men and women showed significant reductions in HR during the arm cycling and load carrying as well. These data suggest that a jogging program can alter cardiovascular function in tasks other than running. The magnitude and direction of change showed no sex differences; therefore, it was also concluded that there are no differences in the trainability of previously sedentary middle-aged men and women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号