首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The purpose of this study was to assess the agreement between two mobile cycle ergometer systems for recording high-intensity, intermittent power output. Twelve trained male cyclists (age 31.4 +/- 9.8 years) performed a single 3 min intermittent cycle test consisting of 12 all-out efforts, separated by periods of passive recovery ranging from 5 to 15 s. Power output was recorded using a Polar S710 heart rate monitor and power sensor kit and an SRM Powercrank system for each test. The SRM used torque and angular velocity to calculate power, while the S710 used chain speed and vibration to calculate power. Significant differences (P < 0.05) in power were found at 8 of the 12 efforts. A significant difference (P = 0.001) was also found when power was averaged over all 12 intervals. Mean power was 556 +/- 102 W and 446 +/- 61 W for the SRM and S710 respectively. The S710 underestimated power by an average of 23% with random errors of */[division sign] 24% when compared with the SRM. Random errors ranged from 36% to 141% with a median of 51%. The results indicate there was little agreement between the two systems and that the Polar S710 did not provide a valid measure of power during intermittent cycling activity when compared with the SRM. Power recorded by the S710 system was influenced greatly by chain vibration and sampling rates.  相似文献   

2.
Abstract

The purpose of this study was to assess the power output of field-based downhill mountain biking. Seventeen trained male downhill cyclists (age 27.1 ± 5.1 years) competing nationally performed two timed runs of a measured downhill course. An SRM powermeter was used to simultaneously record power, cadence, and speed. Values were sampled at 1-s intervals. Heart rates were recorded at 5-s intervals using a Polar S710 heart rate monitor. Peak and mean power output were 834 ± 129 W and 75 ± 26 W respectively. Mean power accounted for only 9% of peak values. Paradoxically, mean heart rate was 168 ± 9 beats · min?1 (89% of age-predicted maximum heart rate). Mean cadence (27 ± 5 rev · min?1) was significantly related to speed (r = 0.51; P < 0.01). Analysis revealed an average of 38 pedal actions per run, with average pedalling periods of 5 s. Power and cadence were not significantly related to run time or any other variable. Our results support the intermittent nature of downhill mountain biking. The poor relationships between power and run time and between cadence and run time suggest they are not essential pre-requisites to downhill mountain biking performance and indicate the importance of riding dynamics to overall performance.  相似文献   

3.
This study aimed to determine if the Garmin Vector (Schaffhausen, Switzerland) power meter produced acceptable measures when compared with the Schoberer Rad Messetechnik (SRM; Julich, Germany) power meter across a range of high-intensity efforts. Twenty-one well-trained cyclists completed power profiles (seven maximal mean efforts between 5 and 600 s) using Vector and SRM power meters. Data were compared using assessments of heteroscedasticity, t tests, linear regression, and typical error of estimate (TEE). The data were heteroscedastic, whereby the Vector pedals increasingly overestimated values at higher power outputs; however, t tests did not identify any significant differences between power meters (> .05). Using linear regression, Vector data were fit to an SRM equivalent (slope = .99; intercept = ?9.87) and TEE produced by this equation was 3.3% (3.0%–3.8%). While the data shows slight heteroscedasticity due to differing strain-gauge placement and resultant torque measurement variance, the Vector appears acceptable for measures of power output across various cycling efforts.  相似文献   

4.
The purpose of this study was to assess the power output of field-based downhill mountain biking. Seventeen trained male downhill cyclists (age 27.1 +/- 5.1 years) competing nationally performed two timed runs of a measured downhill course. An SRM powermeter was used to simultaneously record power, cadence, and speed. Values were sampled at 1-s intervals. Heart rates were recorded at 5-s intervals using a Polar S710 heart rate monitor. Peak and mean power output were 834 +/- 129 W and 75 +/- 26 W respectively. Mean power accounted for only 9% of peak values. Paradoxically, mean heart rate was 168 +/- 9 beats x min(-1) (89% of age-predicted maximum heart rate). Mean cadence (27 +/- 5 rev x min(-1)) was significantly related to speed (r = 0.51; P < 0.01). Analysis revealed an average of 38 pedal actions per run, with average pedalling periods of 5 s. Power and cadence were not significantly related to run time or any other variable. Our results support the intermittent nature of downhill mountain biking. The poor relationships between power and run time and between cadence and run time suggest they are not essential pre-requisites to downhill mountain biking performance and indicate the importance of riding dynamics to overall performance.  相似文献   

5.
This study examined the relationship between sit-to-stand (STS) power and physical function in adults with severe obesity. Thirty-eight adults (age: 44 ± 12 years; body mass index [BMI]: 45.2 ± 7.8 kg/m2) completed evaluations of STS power, strength and functional performance. STS power was measured with a wearable inertial sensor, strength was assessed with the isometric mid-thigh pull, and function was measured with the timed up-and-go (TUG), six-minute walk test (6MWT) and 30-s chair STS. Power and strength (normalised to body mass) entered regression models in addition to age, gender, BMI and physical activity (daily step count). Power displayed large univariate associations with TUG (r = 0.50) and 30-s chair STS (r = 0.67), and a moderate association with 6MWT (r = 0.49). Forward stepwise regression revealed that power independently contributed to TUG (β = ?0.40, p = 0.010), 30-s chair STS (β = 0.67, p < 0.001) and 6MWT performance (β = 0.27, p = 0.007). Power also appeared to be a superior determinant of function compared with strength. Power generated via the STS transfer largely underpins the ability to perform functional tasks in adults with severe obesity, although intervention studies are required to investigate a potentially causal relationship.  相似文献   

6.
The onset of exercise facilitates an improvement in psychomotor performance until the second ventilatory threshold, after which performance is reduced. This inverted-U relationship appears valid for incremental and steady-state exercise, however, not for intermittent exercise. This study examined changes in psychomotor performance of team sport officials during a laboratory-based match simulation. Twelve elite Australian football (n = 5) and rugby league (n = 7) officials (32.5 ± 5.5 years; 180.0 ± 6.8 cm; 78.8 ± 7.6 kg) completed the match simulation on a non-motorised treadmill. Physiological measures were routinely taken, while psychomotor performance was assessed using the Eriksen flanker task (multiple-choice response time). Significant reductions (P < 0.05) were observed in distance covered and high-speed running during the second half when compared to the first. No significant differences (P > 0.05) in psychomotor performance at different time points were observed. Response time was significantly improved when running above 65% of maximal sprinting speed (P < 0.01). This data questions the application of the inverted-U hypothesis for intermittent exercise and suggests that the short high-intensity efforts may not result in the same physiological events that limit psychomotor performance during sustained high-intensity exercise. More so, the high-intensity efforts during the match protocol appeared to promote psychomotor performance during the intermittent exercise.  相似文献   

7.
The pre-event warm-up or “priming” routine for optimising cycling performance is not well-defined or uniform to a specific event. We aimed to determine the effects of varying the intensity of priming on 3 km cycling performance. Ten endurance-trained male cyclists completed four 3 km time-trials (TT) on four separate occasions, each preceded by a different priming strategy including “self-selected” priming and three intermittent priming strategies incorporating 10 min of constant-load cycling followed by 5 × 10 s bouts of varying relative intensity (100% and 150% of peak aerobic power, Wpeak, and all-out priming). The self-selected priming trial (379 ± 44 W) resulted in similar mean power during the 3 km TT to intermittent priming at 100% (376 ± 45 W; ?0.7%; unclear) and 150% (374 ± 48 W; ?1.5%, unclear) of Wpeak, but significantly greater than all-out priming (357 ± 45 W; ?5.8%, almost certainly harmful). Differences between intermittent and self-selected priming existed with regards to heart rate (6.2% to 11.5%), blood lactate (?22.9% to 125%) and VO2 kinetics (?22.9% to 8.2%), but these were not related to performance outcomes. In conclusion, prescribed intermittent priming strategies varying in intensity did not substantially improve 3 km TT performance compared to self-selected priming.  相似文献   

8.
Abstract

Power output and heart rate were monitored for 11 months in one female ([Vdot]O2max: 71.5 mL · kg?1 · min?1) and ten male ([Vdot]O2max: 66.5 ± 7.1 mL · kg?1 · min?1) cyclists using SRM power-meters to quantify power output and heart rate distributions in an attempt to assess exercise intensity and to relate training variables to performance. In total, 1802 data sets were divided into workout categories according to training goals, and power output and heart rate intensity zones were calculated. The ratio of mean power output to respiratory compensation point power output was calculated as an intensity factor for each training session and for each interval during the training sessions. Variability of power output was calculated as a coefficient of variation. There was no difference in the distribution of power output and heart rate for the total season (P = 0.15). Significant differences were observed during high-intensity workouts (P < 0.001). Performance improvements across the season were related to low-cadence strength workouts (P < 0.05). The intensity factor for intervals was related to performance (P < 0.01). The variability in power output was inversely associated with performance (P < 0.01). Better performance by cyclists was characterized by lower variability in power output and higher exercise intensities during intervals.  相似文献   

9.
To investigate the effects of different loads on system and lower-body kinetics during jump squats, 12 resistance-trained men performed jumps under different loading conditions: 0%, 12%, 27%, 42%, 56%, 71%, and 85% of 1-repetition maximum (1-RM). System power output was calculated as the product of the vertical component of the ground reaction force and the vertical velocity of the bar during its ascent. Joint power output was calculated during bar ascent for the hip, knee, and ankle joints, and was also summed across the joints. System power output and joint power at knee and ankle joints were maximized at 0% 1-RM (p < 0.001) and followed the linear trends (p < 0.001) caused by power output decreasing as the load increased. Power output at the hip was maximized at 42% 1-RM (p = 0.016) and followed a quadratic trend (p = 0.030). Summed joint power could be predicted from system power (p < 0.05), while system power could predict power at the knee and ankle joints under some of the loading conditions. Power at the hip could not be predicted from system power. System power during loaded jumps reflects the power at the knee and ankle, while power at the hip does not correspond to system power.  相似文献   

10.
This study investigated the effect cadence has on the estimation of critical power (CP) and the finite work capacity (W?) during the 3-minute all-out cycling test. Ten participants completed 8 tests: 1) an incremental test to calculate gas exchange threshold (GET), maximal aerobic power (MAP) and peak oxygen uptake (V?O2peak), 2–4) three time-to-exhaustion tests at 80, 100 and 105% MAP to calculate CP and W?, 5–7) four 3-minute all-out tests to calculate end power (EP) and work done above EP (WEP) using cadences ranging from preferred ?5 to preferred +10 rev·min?1 to set the fixed resistance. Significant differences were seen between CP and EP-preferred (267.5 ± 22.6 W vs. 296.6 ± 26.1 W, < 0.001), CP and EP?5 (267.5 ± 22.6 W vs. 303.6 ± 24.0 W, < 0.001) and between CP and EP+5 (267.5 ± 22.6 W vs. 290.0 ± 28.0 W, = 0.002). No significant differences were seen between CP and EP+10 (267.5 ± 22.6 W vs. 278.1 ± 30.9 W, = 0.331). Significant differences were seen between W? and WEP at all tested fixed resistances. EP is reduced when cycling at higher than preferred cadences, providing better estimates of CP.  相似文献   

11.
Abstract

Until recently, the physiological demands of cycling competitions were mostly reflected by the measurement of heart rate and the indirect estimation of exercise intensity. The purpose of this case study was to illustrate the varying power output of a professional cyclist during flat and mountain stages of a Grand Tour (Giro d'Italia). Nine stage recordings of a cyclist of the 2005 Giro d'Italia were monitored using a mobile power measurement device (SRM Trainingssystem, Julich, Germany), which recorded direct power output and heart rate. Stages were categorized into flat (n = 5) and mountain stages (n = 4). Data were processed electronically, and the overall mean power in flat and mountain stages and maximal mean power for various durations were calculated. Mean power output was 132 W ± 26 (2.0 W · kg?1 ± 0.4) for the flat and 235 W ± 10 (3.5 W · kg?1 ± 0.1) for the mountain stages. Mountain stages showed higher maximal mean power (367 W) for longer durations (1800 s) than flat stages (239 W). Flat stages are characterized by a large variability of power output with short bursts of high power and long periods with reduced intensity of exercise, whereas mountain stages mostly require submaximal, constant power output over longer periods.  相似文献   

12.
Abstract

Major individual differences in the maximal oxygen uptake response to aerobic training have been documented. Vagal influence on the heart has been shown to contribute to changes in aerobic fitness. Whether vagal influence on the heart also predicts maximal oxygen uptake response to interval-sprinting training, however, is undetermined. Thus, the relationship between baseline vagal activity and the maximal oxygen uptake response to interval-sprinting training was examined. Exercisers (n?=?16) exercised three times a week for 12 weeks, whereas controls did no exercise (n?=?16). Interval-sprinting consisted of 20 min of intermittent sprinting on a cycle ergometer (8 s sprint, 12 s recovery). Maximal oxygen uptake was assessed using open-circuit spirometry. Vagal influence was assessed through frequency analysis of heart rate variability. Participants were aged 22 ± 4.5 years and had a body mass of 72.7 ± 18.9 kg, a body mass index of 26.9 ± 3.9 kg · m?2, and a maximal oxygen uptake of 28 ± 7.4 ml · kg?1 · min?1. Overall increase in maximal oxygen uptake after the training programme, despite being anaerobic in nature, was 19 ± 1.2%. Change in maximal oxygen uptake was correlated with initial baseline heart rate variability high-frequency power in normalised units (r?=?0.58; P < 0.05). Thus, cardiac vagal modulation of heart rate was associated with the aerobic training response after 12 weeks of high-intensity intermittent-exercise. The mechanisms underlying the relationship between the aerobic training response and resting heart rate variability need to be established before practical implications can be identified.  相似文献   

13.
ABSTRACT

Purpose: To validate and compare a novel model based on the critical power (CP) concept that describes the entire domain of maximal mean power (MMP) data from cyclists.

Methods: An omni-domain power-duration (OmPD) model was derived whereby the rate of W? expenditure is bound by maximum sprint power and the power at prolonged durations declines from CP log-linearly. The three-parameter CP (3CP) and exponential (Exp) models were likewise extended with the log-linear decay function (Om3CP and OmExp). Each model bounds W? using a different nonconstant function, W?eff (effective W?). Models were fit to MMP data from nine cyclists who also completed four time-trials (TTs).

Results: The OmPD and Om3CP residuals (4 ± 1%) were smaller than the OmExp residuals (6 ± 2%; P < 0.001). W?eff predicted by the OmPD model was stable between 120–1,800 s, whereas it varied for the Om3CP and OmExp models. TT prediction errors were not different between models (7 ± 5%, 8 ± 5%, 7 ± 6%; P = 0.914).

Conclusion: The OmPD offers similar or superior goodness-of-fit and better theoretical properties compared to the other models, such that it best extends the CP concept to short-sprint and prolonged-endurance performance.  相似文献   

14.
Abstract

In this study, we examined the effects of a pre-acclimatization programme on endurance performance at moderate altitude using a resting intermittent hypoxia protocol. The time-trial performance of 11 cyclists was determined at low altitude (600 m). Athletes were randomly assigned in a double-blind fashion to the hypoxia or the control group. The pre-acclimatization programme consisted of seven sessions each lasting 1 h in normobaric hypoxia (inspired fraction of oxygen of 12.5%, equivalent to approximately 4500 m) for the hypoxia group (n = 6) and in normoxia (inspired fraction of oxygen of 20.9%) for the control group (n = 5). The time-trials were repeated at moderate altitude (1970 m). Mean power output during the time-trial at moderate altitude was decreased in the hypoxia group (?0.26 ± 0.11 W · kg?1) and in the control group (?0.13 ± 0.04 W · kg?1) compared with at low altitude but did not differ between groups (P = 0.13). Our results suggest that the applied protocol of intermittent hypoxia had no positive effect on endurance performance at moderate altitude. Whether different intermittent hypoxia protocols are advantageous remains to be determined.  相似文献   

15.
We tested a simple and compact device designed for manual resistance training in conditions of microgravity (Self-Powered Rope Trainer Duo (SPoRT Duo)) to increase muscle performance. Twenty-four participants (20.8 ± 2.1 years) were randomly assigned to a manual resistance group (n = 12) and a free-weight group (n = 12). Participants performed eight exercises (three sets; 8–12 efforts) either with free weights or the SPoRT Duo twice a week for 6 weeks. Maximal isometric force of trunk flexion, back extension and chest press increased (P at least 0.01, d at least 0.52) both in the manual resistance group (18.4% ± 15.0%; 32.7% ± 22.7%; 15.3% ± 9.7%) and free-weight group (18.0% ± 13.9%; 26.6% ± 28.9%; 13.3% ± 7.6%). The change in maximal isometric force of wide grip row in both groups (d at best 0.38) did not reach statistical significance (P at best 0.08). The squat one-repetition-maximum increased in the manual resistance group (29.8% ± 22.1%) and the free-weight group (32.4% ± 26.6%). Jump height, determined by a jump-and-reach test, increased in the free-weight group (9.8% ± 13.2%) but not in the manual resistance group (2.0% ± 8.5%). Manual resistance training was equally effective in increasing strength as traditional resistance training with free weights. This apparatus is a useful addition to current in-flight exercise systems.  相似文献   

16.
Understanding how loading affects power production in resistance training is a key step in identifying the most optimal way of training muscular power – an essential trait in most sporting movements. Twelve elite male sailors with extensive strength-training experience participated in a comparison of kinematics and kinetics from the upper body musculature, with upper body push (bench press) and pull (bench pull) movements performed across loads of 10–100% of one repetition maximum (1RM). 1RM strength and force were shown to be greater in the bench press, while velocity and power outputs were greater for the bench pull across the range of loads. While power output was at a similar level for the two movements at a low load (10% 1RM), significantly greater power outputs were observed for the bench pull in comparison to the bench press with increased load. Power output (P max) was maximized at higher relative loads for both mean and peak power in the bench pull (78.6 ± 5.7% and 70.4 ± 5.4% of 1RM) compared to the bench press (53.3 ± 1.7% and 49.7 ± 4.4% of 1RM). Findings can most likely be attributed to differences in muscle architecture, which may have training implications for these muscles.  相似文献   

17.
A large proportion of elite cross-country skiers suffer from chronic anterior compartment syndrome (CACS). This study used surface electromyograms (EMGs) to investigate whether differences existed in the activation characteristics of the tibialis anterior muscle between elite cross-country skiers with a history of anterior compartment pain (symptomatic group) and a pain-free control group. Based on self-reported pain symptoms, twelve young, national-level cross-country ski athletes were assigned to a symptomatic group (N = 5), a control group (N = 4), or analyzed individually if their diagnosis was not certain (N = 3). During skating, EMGs were recorded on five lower leg muscles. The relative increase in EMG power per step when increasing the effort level of skating was larger in the symptomatic group than in the control group for tibialis anterior (143 ± 12% vs. 125 ± 23%; Cohen's d = 1.17), peroneus longus (123 ± 24% vs. 107 ± 6%; d = 0.91), and gastrocnemius lateralis (167 ± 51% vs. 117 ± 12%; d = 1.64). The symptomatic group showed more power in the lower frequency bands of the tibialis anterior's EMG spectra (p < 0.001), whereas no group differences were found in other muscles (all p>0.2). Within the step cycle, these differences appeared in the swing phase and in the gliding phase during single leg support. The observed differences in the EMG spectra may serve as an early identification of athletes who are at risk of developing CACS.  相似文献   

18.
The purpose of this study was to ascertain the typical metabolic power characteristics of elite men’s hockey, and whether changes occur within matches and throughout an international tournament. National team players (n = 16), divided into 3 positional groups (strikers, midfielders, defenders), wore Global Positioning System devices in 6 matches. Energetic (metabolic power, energy expenditure) and displacement (distance, speed, acceleration) variables were determined, and intensity was classified utilising speed, acceleration and metabolic power thresholds. Midfielder’s average metabolic power (11.8 ± 1.0 W · kg?1) was similar to strikers (11.1 ± 1.3 W · kg?1) and higher than defenders (10.8 ± 1.2 W · kg?1, P = 0.001). Strikers (29.71 ± 3.39 kJ · kg?1) expended less energy than midfielders (32.18 ± 2.67 kJ · kg?1, P = 0.014) and defenders (33.23 ± 3.96 kJ · kg?1, P < 0.001). Energetic variables did not change between halves or across matches. Across all positions, over 45% of energy expenditure was at high intensity (>20 W · kg?1). International hockey matches are intense and highly intermittent; however, intensity is maintained throughout matches and over a tournament. In isolation, displacement measures underestimate the amount of high-intensity activity, whereas the integration of instantaneous speed and acceleration provides a more comprehensive assessment of the demands for variable-speed activity typically occurring in hockey matches.  相似文献   

19.
In this study, we assessed the agreement between the powers recorded during a 30?s upper-body Wingate test using three different methods. Fifty-six men completed a single test on a Monark 814E mechanically braked ergometer fitted with a Schoberer Rad Messtechnik (SRM) powermeter. A commercial software package (Wingate test kit version 2.21, Cranlea, UK) was used to calculate conventional and corrected (with accelerative forces) values of power based on a resistive load (5% body mass) and flywheel velocity. The SRM calculated powers based on torque (measured at the crank arm) and crank rate. Values for peak 1 and 5?s power and mean 30?s power were measured. No significant differences (P?>0.05) were found between the three methods for 30?s power values. However, the corrected values for peak 1 and 5?s power were 36 and 23% higher (P?<0.05) respectively than those for the conventional method, and 27 and 16% higher (P?<0.05) respectively than those for the SRM method. The conventional and SRM values for peak 1 and 5?s power were similar (P?>0.05). Power values recorded using each method were influenced by sample time (P?<0.05). Our results suggest that these three measures of power are similar when sampled over 30?s, but discrepancies occur when the sample time is reduced to either 1 or 5?s.  相似文献   

20.
The purpose of this study was to examine the test–retest reliability and construct validity of three age-adapted Yo-Yo intermittent tests in football players aged 9–16 years (n?=?70) and in age-matched non-sports active boys (n?=?72). Within 7 days, each participant performed two repetitions of an age-related intensity-adapted Yo-Yo intermittent test, i.e. the Yo-Yo intermittent recovery level 1 children's test for 9- to 11-year-olds; the Yo-Yo intermittent endurance level 1 for 12- to 13-year-olds and the Yo-Yo intermittent endurance level 2 test for 14- to 16-year-olds. Peak heart rate (HRpeak) was determined for all tests. The distance covered in the tests was 57% (1098?±?680 vs. 700?±?272?m), 119% (2325?±?778 vs. 1062?±?285?m) and 238% (1743?±?460 vs. 515?±?113?m) higher (p?≤?.016), respectively for football-trained than for non-sports active boys aged 9–11, 12–13 and 14–16 years. The typical errors of measurement for Yo-Yo distance, expressed as a percentage of the coefficient of variation (confidence interval), were 11.1% (9.0–14.7%), 10.1% (8.1–13.7%) and 8.5% (6.7–11.7%) for football players aged 9–11, 12–13 and 14–16 years, respectively, with corresponding values of 9.3% (7.4–12.8%), 10.2% (8.1–14.0%) and 8.5% (6.8–11.3%) for non-sports active boys. Intraclass correlation coefficient values for test–retest were excellent in both groups (range: 0.844–0.981). Relative HRpeak did not differ significantly between the groups in test and retest. In conclusion, Yo-Yo intermittent test performances and HRpeak are reliable for 9- to 16-year-old footballers and non-sports active boys. Additionally, performances of the three Yo-Yo tests were seemingly better for football-trained than for non-sports active boys, providing evidence of construct validity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号